Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees

Ibanez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME (2010)
PLANT PHYSIOLOGY 153(4): 1823-1833.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Ibanez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME. Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. PLANT PHYSIOLOGY. 2010;153(4):1823-1833.
Ibanez, C., Kozarewa, I., Johansson, M., Ogren, E., Rohde, A., & Eriksson, M. E. (2010). Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. PLANT PHYSIOLOGY, 153(4), 1823-1833. doi:10.1104/pp.110.158220
Ibanez, C., Kozarewa, I., Johansson, M., Ogren, E., Rohde, A., and Eriksson, M. E. (2010). Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. PLANT PHYSIOLOGY 153, 1823-1833.
Ibanez, C., et al., 2010. Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. PLANT PHYSIOLOGY, 153(4), p 1823-1833.
C. Ibanez, et al., “Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees”, PLANT PHYSIOLOGY, vol. 153, 2010, pp. 1823-1833.
Ibanez, C., Kozarewa, I., Johansson, M., Ogren, E., Rohde, A., Eriksson, M.E.: Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees. PLANT PHYSIOLOGY. 153, 1823-1833 (2010).
Ibanez, C., Kozarewa, I., Johansson, M., Ogren, E., Rohde, A., and Eriksson, M. E. “Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees”. PLANT PHYSIOLOGY 153.4 (2010): 1823-1833.
This data publication is cited in the following publications:
This publication cites the following data publications:

50 Citations in Europe PMC

Data provided by Europe PubMed Central.

Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa.
McKown AD, Guy RD, Klápště J, Geraldes A, Friedmann M, Cronk QC, El-Kassaby YA, Mansfield SD, Douglas CJ., New Phytol 201(4), 2014
PMID: 24491114
Genetic architecture of spring and autumn phenology in Salix.
Ghelardini L, Berlin S, Weih M, Lagercrantz U, Gyllenstrand N, Rönnberg-Wästljung AC., BMC Plant Biol 14(), 2014
PMID: 24438179
Diurnal oscillations of soybean circadian clock and drought responsive genes.
Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Molinari HB, de Oliveira MC, Harmon FG, Nepomuceno A., PLoS One 9(1), 2014
PMID: 24475115
Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa.
McKown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, Friedmann M, Muchero W, Tuskan GA, Ehlting J, Cronk QC, El-Kassaby YA, Mansfield SD, Douglas CJ., New Phytol 203(2), 2014
PMID: 24750093
Growth and carbon relations of temperate deciduous tree species at their upper elevation range limit
Lenz A, Vitasse Y, Hoch G, Körner C, Turnbull M., J Ecol 102(6), 2014
PMID: IND600824823
Understanding plant cold hardiness: an opinion.
Gusta LV, Wisniewski M., Physiol Plant 147(1), 2013
PMID: 22409670
The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate.
Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P., Mol Ecol 22(5), 2013
PMID: 23094714
Plant memory: a tentative model.
Thellier M, Lüttge U., Plant Biol (Stuttg) 15(1), 2013
PMID: 23121044
Understanding plant cold hardiness: an opinion
Gusta LV, Wisniewski M., Physiol Plant 147(1), 2013
PMID: IND500643919
Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings.
Galvez DA, Landhäusser SM, Tyree MT., New Phytol 198(1), 2013
PMID: 23347066
Poplar stems show opposite epigenetic patterns during winter dormancy and vegetative growth
Conde D, González-Melendi P, Allona I., Trees (Berl West) 27(1), 2013
PMID: IND500622422
Daylength mediated control of seasonal growth patterns in perennial trees.
Petterle A, Karlberg A, Bhalerao RP., Curr Opin Plant Biol 16(3), 2013
PMID: 23473967
Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst).
Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U., PLoS One 8(3), 2013
PMID: 23555899
Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing.
Ueno S, Klopp C, Leplé JC, Derory J, Noirot C, Léger V, Prince E, Kremer A, Plomion C, Le Provost G., BMC Genomics 14(), 2013
PMID: 23575249
Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot.
Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z., Plant Mol Biol 83(3), 2013
PMID: 23756818
The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms.
Cooke JE, Eriksson ME, Junttila O., Plant Cell Environ 35(10), 2012
PMID: 22670814
Thermoplasticity in the plant circadian clock: how plants tell the time-perature.
James AB, Syed NH, Brown JW, Nimmo HG., Plant Signal Behav 7(10), 2012
PMID: 22902701
Bud set in poplar--genetic dissection of a complex trait in natural and hybrid populations.
Rohde A, Storme V, Jorge V, Gaudet M, Vitacolonna N, Fabbrini F, Ruttink T, Zaina G, Marron N, Dillen S, Steenackers M, Sabatti M, Morgante M, Boerjan W, Bastien C., New Phytol 189(1), 2011
PMID: 21039557
Identification of a homolog of Arabidopsis DSP4 (SEX4) in chestnut: its induction and accumulation in stem amyloplasts during winter or in response to the cold.
Berrocal-Lobo M, Ibañez C, Acebo P, Ramos A, Perez-Solis E, Collada C, Casado R, Aragoncillo C, Allona I., Plant Cell Environ 34(10), 2011
PMID: 21631532
Molecular mechanisms underlying the Arabidopsis circadian clock.
Nakamichi N., Plant Cell Physiol 52(10), 2011
PMID: 21873329

44 References

Data provided by Europe PubMed Central.

FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis.
Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B., Cell 101(3), 2000
PMID: 10847687
Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization
Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T., 1997
Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene.
Park DH, Somers DE, Kim YS, Choy YH, Lim HK, Soh MS, Kim HJ, Kay SA, Nam HG., Science 285(5433), 1999
PMID: 10477524
Quantitative analysis of Drosophila period gene transcription in living animals.
Plautz JD, Straume M, Stanewsky R, Jamison CF, Brandes C, Dowse HB, Hall JC, Kay SA., J. Biol. Rhythms 12(3), 1997
PMID: 9181432
Winter disruption of the circadian clock in chestnut.
Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I., Proc. Natl. Acad. Sci. U.S.A. 102(19), 2005
PMID: 15860586
Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis.
Roden LC, Song HR, Jackson S, Morris K, Carre IA., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271123
Plant dormancy in the perennial context.
Rohde A, Bhalerao RP., Trends Plant Sci. 12(5), 2007
PMID: 17416545
PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar.
Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W., Plant Cell 14(8), 2002
PMID: 12172029
Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.
Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G., Science 288(5471), 2000
PMID: 10834834
FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.
Sawa M, Nusinow DA, Kay SA, Imaizumi T., Science 318(5848), 2007
PMID: 17872410
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.
Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA., Science 289(5480), 2000
PMID: 10926537
CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.
Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G., Nature 410(6832), 2001
PMID: 11323677
Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2.
Takata N, Saito S, Saito CT, Nanjo T, Shinohara K, Uemura M., New Phytol. 181(4), 2009
PMID: 19140936
Insect photoperiodism and circadian clocks: models and mechanisms.
Tauber E, Kyriacou BP., J. Biol. Rhythms 16(4), 2001
PMID: 11506382
Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.
Turck F, Fornara F, Coupland G., Annu Rev Plant Biol 59(), 2008
PMID: 18444908
Guidelines for the Conduct of Tests for Distinctness, Homogeneity and Stability— L
AUTHOR UNKNOWN, 1981
Molecular basis of seasonal time measurement in Arabidopsis.
Yanovsky MJ, Kay SA., Nature 419(6904), 2002
PMID: 12239570

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20530613
PubMed | Europe PMC

Search this title in

Google Scholar