Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock

Johansson M, McWatters HG, Bako L, Takata N, Gyula P, Hall A, Somers DE, Millar AJ, Eriksson ME (2011)
PLANT PHYSIOLOGY 155(4): 2108-2122.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Johansson M, McWatters HG, Bako L, et al. Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock. PLANT PHYSIOLOGY. 2011;155(4):2108-2122.
Johansson, M., McWatters, H. G., Bako, L., Takata, N., Gyula, P., Hall, A., Somers, D. E., et al. (2011). Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock. PLANT PHYSIOLOGY, 155(4), 2108-2122.
Johansson, M., McWatters, H. G., Bako, L., Takata, N., Gyula, P., Hall, A., Somers, D. E., Millar, A. J., and Eriksson, M. E. (2011). Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock. PLANT PHYSIOLOGY 155, 2108-2122.
Johansson, M., et al., 2011. Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock. PLANT PHYSIOLOGY, 155(4), p 2108-2122.
M. Johansson, et al., “Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock”, PLANT PHYSIOLOGY, vol. 155, 2011, pp. 2108-2122.
Johansson, M., McWatters, H.G., Bako, L., Takata, N., Gyula, P., Hall, A., Somers, D.E., Millar, A.J., Eriksson, M.E.: Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock. PLANT PHYSIOLOGY. 155, 2108-2122 (2011).
Johansson, M., McWatters, H. G., Bako, L., Takata, N., Gyula, P., Hall, A., Somers, D. E., Millar, A. J., and Eriksson, M. E. “Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock”. PLANT PHYSIOLOGY 155.4 (2011): 2108-2122.
This data publication is cited in the following publications:
This publication cites the following data publications:

72 References

Data provided by Europe PubMed Central.

Circadian clock mutants in Arabidopsis identified by luciferase imaging.
Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA., Science 267(5201), 1995
PMID: 7855595
A novel circadian phenotype based on firefly luciferase expression in transgenic plants.
Millar AJ, Short SR, Chua NH, Kay SA., Plant Cell 4(9), 1992
PMID: 1392609
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock.
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H., Plant Cell 22(3), 2010
PMID: 20233950
Web-based primer design for single nucleotide polymorphism analysis.
Neff MM, Turk E, Kalishman M., Trends Genet. 18(12), 2002
PMID: 12446140
Resonating circadian clocks enhance fitness in cyanobacteria.
Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH., Proc. Natl. Acad. Sci. U.S.A. 95(15), 1998
PMID: 9671734
PRR3 Is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock.
Para A, Farre EM, Imaizumi T, Pruneda-Paz JL, Harmon FG, Kay SA., Plant Cell 19(11), 2007
PMID: 18055606
Independent photoreceptive circadian clocks throughout Drosophila.
Plautz JD, Kaneko M, Hall JC, Kay SA., Science 278(5343), 1997
PMID: 9374465
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways.
Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL., Proc. Natl. Acad. Sci. U.S.A. 106(39), 2009
PMID: 19805390
Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis.
Roden LC, Song HR, Jackson S, Morris K, Carre IA., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271123
ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.
Somers DE, Schultz TF, Milnamow M, Kay SA., Cell 101(3), 2000
PMID: 10847686
Photoperiodism in Plants, Ed 2
Thomas B, Vince D., 1997
Transcriptional activation of tobacco E2F is repressed by co-transfection with the retinoblastoma-related protein: cyclin D expression overcomes this repressor activity.
Uemukai K, Iwakawa H, Kosugi S, de Uemukai S, Kato K, Kondorosi E, Murray JA, Ito M, Shinmyo A, Sekine M., Plant Mol. Biol. 57(1), 2005
PMID: 15821870
A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.
Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM., Plant Cell 9(4), 1997
PMID: 9144958
Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis.
Yamamoto Y, Sato E, Shimizu T, Nakamich N, Sato S, Kato T, Tabata S, Nagatani A, Yamashino T, Mizuno T., Plant Cell Physiol. 44(11), 2003
PMID: 14634148
Molecular basis of seasonal time measurement in Arabidopsis.
Yanovsky MJ, Kay SA., Nature 419(6904), 2002
PMID: 12239570
The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering.
Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP, Meeks-Wagner DR., Plant J. 10(4), 1996
PMID: 8893545
A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9.
Zeilinger MN, Farre EM, Taylor SR, Kay SA, Doyle FJ 3rd., Mol. Syst. Biol. 2(), 2006
PMID: 17102803

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21300918
PubMed | Europe PMC

Search this title in

Google Scholar