Riboregulation in plant-associated alpha-proteobacteria

Becker A, Overloeper A, Schlueter J-P, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E (2014)
RNA Biology 11(5): 550-562.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
The symbiotic alpha-rhizobia Sinorhizobium meliloti, Bradyrhizobium japonicum, Rhizobium etli and the related plant pathogen Agrobacterium tumefaciens are important model organisms for studying plant-microbe interactions. These metabolically versatile soil bacteria are characterized by complex lifestyles and large genomes. Here we summarize the recent knowledge on their small non-coding RNAs (sRNAs) including conservation, function, and interaction of the sRNAs with the RNA chaperone Hfq. In each of these organisms, an inventory of hundreds of cis- and trans-encoded sRNAs with regulatory potential was uncovered by high-throughput approaches and used for the construction of 39 sRNA family models. Genome-wide analyses of hfq mutants and co-immunoprecipitation with tagged Hfq revealed a major impact of the RNA chaperone on the physiology of plant-associated alpha-proteobacteria including symbiosis and virulence. Highly conserved members of the SmelC411 family are the AbcR sRNAs, which predominantly regulate ABC transport systems. AbcR1 of A. tumefaciens controls the uptake of the plant-generated signaling molecule GABA and is a central regulator of nutrient uptake systems. It has similar functions in S. meliloti and the human pathogen Brucella abortus. As RNA degradation is an important process in RNA-based gene regulation, a short overview on ribonucleases in plant-associated alpha-proteobacteria concludes this review.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Becker A, Overloeper A, Schlueter J-P, et al. Riboregulation in plant-associated alpha-proteobacteria. RNA Biology. 2014;11(5):550-562.
Becker, A., Overloeper, A., Schlueter, J. - P., Reinkensmeier, J., Robledo, M., Giegerich, R., Narberhaus, F., et al. (2014). Riboregulation in plant-associated alpha-proteobacteria. RNA Biology, 11(5), 550-562.
Becker, A., Overloeper, A., Schlueter, J. - P., Reinkensmeier, J., Robledo, M., Giegerich, R., Narberhaus, F., and Evguenieva-Hackenberg, E. (2014). Riboregulation in plant-associated alpha-proteobacteria. RNA Biology 11, 550-562.
Becker, A., et al., 2014. Riboregulation in plant-associated alpha-proteobacteria. RNA Biology, 11(5), p 550-562.
A. Becker, et al., “Riboregulation in plant-associated alpha-proteobacteria”, RNA Biology, vol. 11, 2014, pp. 550-562.
Becker, A., Overloeper, A., Schlueter, J.-P., Reinkensmeier, J., Robledo, M., Giegerich, R., Narberhaus, F., Evguenieva-Hackenberg, E.: Riboregulation in plant-associated alpha-proteobacteria. RNA Biology. 11, 550-562 (2014).
Becker, Anke, Overloeper, Aaron, Schlueter, Jan-Philip, Reinkensmeier, Jan, Robledo, Marta, Giegerich, Robert, Narberhaus, Franz, and Evguenieva-Hackenberg, Elena. “Riboregulation in plant-associated alpha-proteobacteria”. RNA Biology 11.5 (2014): 550-562.
This data publication is cited in the following publications:
This publication cites the following data publications:

2 Citations in Europe PMC

Data provided by Europe PubMed Central.

Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58.
Dequivre M, Diel B, Villard C, Sismeiro O, Durot M, Coppee JY, Nesme X, Vial L, Hommais F., Mol. Plant Microbe Interact. 28(5), 2015
PMID: 26024442
How do base-pairing small RNAs evolve?
Updegrove TB, Shabalina SA, Storz G., FEMS Microbiol. Rev. 39(3), 2015
PMID: 25934120

110 References

Data provided by Europe PubMed Central.

New aspects of RNA processing in prokaryotes.
Evguenieva-Hackenberg E, Klug G., Curr. Opin. Microbiol. 14(5), 2011
PMID: 21945217
Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs.
Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U., RNA 9(11), 2003
PMID: 14561880
Characterization of the role of ribonucleases in Salmonella small RNA decay.
Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM., Nucleic Acids Res. 35(22), 2007
PMID: 17982174
The critical role of RNA processing and degradation in the control of gene expression.
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC., FEMS Microbiol. Rev. 34(5), 2010
PMID: 20659169
5'-to-3' exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5' stability of mRNA.
Mathy N, Benard L, Pellegrini O, Daou R, Wen T, Condon C., Cell 129(4), 2007
PMID: 17512403
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548
RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.
Baumgardt K, Charoenpanich P, McIntosh M, Schikora A, Stein E, Thalmann S, Kogel KH, Klug G, Becker A, Evguenieva-Hackenberg E., J. Bacteriol. 196(7), 2014
PMID: 24488310
RNase J is involved in the 5'-end maturation of 16S rRNA and 23S rRNA in Sinorhizobium meliloti.
Madhugiri R, Evguenieva-Hackenberg E., FEBS Lett. 583(14), 2009
PMID: 19540834
Dual RNA-seq of pathogen and host.
Westermann AJ, Gorski SA, Vogel J., Nat. Rev. Microbiol. 10(9), 2012
PMID: 22890146
The Vienna RNA websuite.
Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18424795

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 25003187
PubMed | Europe PMC

Search this title in

Google Scholar