Riboregulation in plant-associated alpha-proteobacteria

Becker A, Overloeper A, Schlueter J-P, Reinkensmeier J, Robledo M, Giegerich R, Narberhaus F, Evguenieva-Hackenberg E (2014)
RNA Biology 11(5): 550-562.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ; ; ; ;
Abstract / Bemerkung
The symbiotic alpha-rhizobia Sinorhizobium meliloti, Bradyrhizobium japonicum, Rhizobium etli and the related plant pathogen Agrobacterium tumefaciens are important model organisms for studying plant-microbe interactions. These metabolically versatile soil bacteria are characterized by complex lifestyles and large genomes. Here we summarize the recent knowledge on their small non-coding RNAs (sRNAs) including conservation, function, and interaction of the sRNAs with the RNA chaperone Hfq. In each of these organisms, an inventory of hundreds of cis- and trans-encoded sRNAs with regulatory potential was uncovered by high-throughput approaches and used for the construction of 39 sRNA family models. Genome-wide analyses of hfq mutants and co-immunoprecipitation with tagged Hfq revealed a major impact of the RNA chaperone on the physiology of plant-associated alpha-proteobacteria including symbiosis and virulence. Highly conserved members of the SmelC411 family are the AbcR sRNAs, which predominantly regulate ABC transport systems. AbcR1 of A. tumefaciens controls the uptake of the plant-generated signaling molecule GABA and is a central regulator of nutrient uptake systems. It has similar functions in S. meliloti and the human pathogen Brucella abortus. As RNA degradation is an important process in RNA-based gene regulation, a short overview on ribonucleases in plant-associated alpha-proteobacteria concludes this review.
RNA Biology


Becker A, Overloeper A, Schlueter J-P, et al. Riboregulation in plant-associated alpha-proteobacteria. RNA Biology. 2014;11(5):550-562.
Becker, A., Overloeper, A., Schlueter, J. - P., Reinkensmeier, J., Robledo, M., Giegerich, R., Narberhaus, F., et al. (2014). Riboregulation in plant-associated alpha-proteobacteria. RNA Biology, 11(5), 550-562. doi:10.4161/rna.29625
Becker, A., Overloeper, A., Schlueter, J. - P., Reinkensmeier, J., Robledo, M., Giegerich, R., Narberhaus, F., and Evguenieva-Hackenberg, E. (2014). Riboregulation in plant-associated alpha-proteobacteria. RNA Biology 11, 550-562.
Becker, A., et al., 2014. Riboregulation in plant-associated alpha-proteobacteria. RNA Biology, 11(5), p 550-562.
A. Becker, et al., “Riboregulation in plant-associated alpha-proteobacteria”, RNA Biology, vol. 11, 2014, pp. 550-562.
Becker, A., Overloeper, A., Schlueter, J.-P., Reinkensmeier, J., Robledo, M., Giegerich, R., Narberhaus, F., Evguenieva-Hackenberg, E.: Riboregulation in plant-associated alpha-proteobacteria. RNA Biology. 11, 550-562 (2014).
Becker, Anke, Overloeper, Aaron, Schlueter, Jan-Philip, Reinkensmeier, Jan, Robledo, Marta, Giegerich, Robert, Narberhaus, Franz, and Evguenieva-Hackenberg, Elena. “Riboregulation in plant-associated alpha-proteobacteria”. RNA Biology 11.5 (2014): 550-562.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Brucella central carbon metabolism: an update.
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ., Crit Rev Microbiol 44(2), 2018
PMID: 28604247
Transcriptional Activation of Virulence Genes of Rhizobium etli.
Wang L, Lacroix B, Guo J, Citovsky V., J Bacteriol 199(6), 2017
PMID: 28069822
A conserved α-proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots.
Robledo M, Peregrina A, Millán V, García-Tomsig NI, Torres-Quesada O, Mateos PF, Becker A, Jiménez-Zurdo JI., Environ Microbiol 19(7), 2017
PMID: 28401641
RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view.
Jiménez-Zurdo JI, Robledo M., RNA Biol 14(12), 2017
PMID: 28805544
A Genome-Wide Prediction and Identification of Intergenic Small RNAs by Comparative Analysis in Mesorhizobium huakuii 7653R.
Fuli X, Wenlong Z, Xiao W, Jing Z, Baohai H, Zhengzheng Z, Bin-Guang M, Youguo L., Front Microbiol 8(), 2017
PMID: 28943874
Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq).
Babski J, Haas KA, Näther-Schindler D, Pfeiffer F, Förstner KU, Hammelmann M, Hilker R, Becker A, Sharma CM, Marchfelder A, Soppa J., BMC Genomics 17(1), 2016
PMID: 27519343
Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110.
Hahn J, Tsoy OV, Thalmann S, Čuklina J, Gelfand MS, Evguenieva-Hackenberg E., PLoS One 11(10), 2016
PMID: 27788207
How do base-pairing small RNAs evolve?
Updegrove TB, Shabalina SA, Storz G., FEMS Microbiol Rev 39(3), 2015
PMID: 25934120
Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58.
Dequivre M, Diel B, Villard C, Sismeiro O, Durot M, Coppée JY, Nesme X, Vial L, Hommais F., Mol Plant Microbe Interact 28(5), 2015
PMID: 26024442

110 References

Daten bereitgestellt von Europe PubMed Central.

New aspects of RNA processing in prokaryotes.
Evguenieva-Hackenberg E, Klug G., Curr. Opin. Microbiol. 14(5), 2011
PMID: 21945217
Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs.
Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U., RNA 9(11), 2003
PMID: 14561880
Characterization of the role of ribonucleases in Salmonella small RNA decay.
Viegas SC, Pfeiffer V, Sittka A, Silva IJ, Vogel J, Arraiano CM., Nucleic Acids Res. 35(22), 2007
PMID: 17982174
The critical role of RNA processing and degradation in the control of gene expression.
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC., FEMS Microbiol. Rev. 34(5), 2010
PMID: 20659169
5'-to-3' exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5' stability of mRNA.
Mathy N, Benard L, Pellegrini O, Daou R, Wen T, Condon C., Cell 129(4), 2007
PMID: 17512403
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548
RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.
Baumgardt K, Charoenpanich P, McIntosh M, Schikora A, Stein E, Thalmann S, Kogel KH, Klug G, Becker A, Evguenieva-Hackenberg E., J. Bacteriol. 196(7), 2014
PMID: 24488310
RNase J is involved in the 5'-end maturation of 16S rRNA and 23S rRNA in Sinorhizobium meliloti.
Madhugiri R, Evguenieva-Hackenberg E., FEBS Lett. 583(14), 2009
PMID: 19540834
Dual RNA-seq of pathogen and host.
Westermann AJ, Gorski SA, Vogel J., Nat. Rev. Microbiol. 10(9), 2012
PMID: 22890146
The Vienna RNA websuite.
Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL., Nucleic Acids Res. 36(Web Server issue), 2008
PMID: 18424795


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 25003187
PubMed | Europe PMC

Suchen in

Google Scholar