Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors

Wu Z-S, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Muellen K (2014)
Advanced Materials 26(26): 4552-+.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ;
Abstract
Highly uniform, ultrathin, layer-by-layer heteroatom (N, B) co-doped graphene films are fabricated for high-performance on-chip planar micro-supercapacitors with an ultrahigh volumetric capacitance of similar to 488 F cm(-3) and excellent rate capability due to the synergistic effect of nitrogen and boron co-doping.
Publishing Year
ISSN
PUB-ID

Cite this

Wu Z-S, Parvez K, Winter A, et al. Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors. Advanced Materials. 2014;26(26):4552-+.
Wu, Z. - S., Parvez, K., Winter, A., Vieker, H., Liu, X., Han, S., Turchanin, A., et al. (2014). Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors. Advanced Materials, 26(26), 4552-+.
Wu, Z. - S., Parvez, K., Winter, A., Vieker, H., Liu, X., Han, S., Turchanin, A., Feng, X., and Muellen, K. (2014). Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors. Advanced Materials 26, 4552-+.
Wu, Z.-S., et al., 2014. Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors. Advanced Materials, 26(26), p 4552-+.
Z.-S. Wu, et al., “Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors”, Advanced Materials, vol. 26, 2014, pp. 4552-+.
Wu, Z.-S., Parvez, K., Winter, A., Vieker, H., Liu, X., Han, S., Turchanin, A., Feng, X., Muellen, K.: Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors. Advanced Materials. 26, 4552-+ (2014).
Wu, Zhong-Shuai, Parvez, Khaled, Winter, Andreas, Vieker, Henning, Liu, Xianjie, Han, Sheng, Turchanin, Andrey, Feng, Xinliang, and Muellen, Klaus. “Layer-by-Layer Assembled Heteroatom-Doped Graphene Films with Ultrahigh Volumetric Capacitance and Rate Capability for Micro-Supercapacitors”. Advanced Materials 26.26 (2014): 4552-+.
This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

From Soybean residue to advanced supercapacitors.
Ferrero GA, Fuertes AB, Sevilla M., Sci Rep 5(), 2015
PMID: 26568473
Structural design of graphene for use in electrochemical energy storage devices.
Chen K, Song S, Liu F, Xue D., Chem Soc Rev 44(17), 2015
PMID: 26051987
Alternating Stacked Graphene-Conducting Polymer Compact Films with Ultrahigh Areal and Volumetric Capacitances for High-Energy Micro-Supercapacitors.
Wu ZS, Parvez K, Li S, Yang S, Liu Z, Liu S, Feng X, Mullen K., Adv. Mater. Weinheim 27(27), 2015
PMID: 26043199
Ultrathin Printable Graphene Supercapacitors with AC Line-Filtering Performance.
Wu ZS, Liu Z, Parvez K, Feng X, Mullen K., Adv. Mater. Weinheim 27(24), 2015
PMID: 25973974
Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.
Tang H, Yang C, Lin Z, Yang Q, Kang F, Wong CP., Nanoscale 7(20), 2015
PMID: 25896639
Sol processing of conjugated carbon nitride powders for thin-film fabrication.
Zhang J, Zhang M, Lin L, Wang X., Angew. Chem. Int. Ed. Engl. 54(21), 2015
PMID: 25833791
Hierarchical Conducting Polymer@Clay Core-Shell Arrays for Flexible All-Solid-State Supercapacitor Devices.
Shao M, Li Z, Zhang R, Ning F, Wei M, Evans DG, Duan X., Small 11(29), 2015
PMID: 25788400

64 References

Data provided by Europe PubMed Central.

High-power lithium batteries from functionalized carbon-nanotube electrodes.
Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim BS, Hammond PT, Shao-Horn Y., Nat Nanotechnol 5(7), 2010
PMID: 20562872

Ivanova, Proc. SPIE 4937(), 2002
Simultaneous nitrogen doping and reduction of graphene oxide.
Li X, Wang H, Robinson JT, Sanchez H, Diankov G, Dai H., J. Am. Chem. Soc. 131(43), 2009
PMID: 19817436
3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction.
Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K., J. Am. Chem. Soc. 134(22), 2012
PMID: 22624986

Panchokarla, Adv. Mater. 21(), 2009

Kim, Mater. Lett. 93(), 2013

Park, J. Mater. Chem. 22(), 2012
3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage.
Wang DW, Li F, Liu M, Lu GQ, Cheng HM., Angew. Chem. Int. Ed. Engl. 47(2), 2008
PMID: 18022983

Wu, Adv. Funct. Mater. 20(), 2010

Guo, J. Power Sources 186(), 2009
Vertically aligned BCN nanotubes with high capacitance.
Iyyamperumal E, Wang S, Dai L., ACS Nano 6(6), 2012
PMID: 22639830
Synthesis of nitrogen-doped graphene films for lithium battery application.
Reddy AL, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM., ACS Nano 4(11), 2010
PMID: 20931996

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24782095
PubMed | Europe PMC

Search this title in

Google Scholar