All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications

Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A (2014)
Advanced Materials 26(28): 4831-+.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Non-destructive chemical functionalization of graphene for applications in electronic devices (e.g., sensors or transducers) is achieved via assembly of carbon nano-membrane (CNM)/single-layer graphene (SLG) van der Waals heterostructures. The CNMs are 1 nm-thick, dielectric molecular sheets terminated with functional amino groups. The structure and performance of heterostructured field-effect transistors (FETs) are characterized by photoelectron/Raman spectroscopy and by electric transport measurements in vacuum, ambient conditions, and water. [GRAPHICS] .
Erscheinungsjahr
Zeitschriftentitel
Advanced Materials
Band
26
Zeitschriftennummer
28
Seite
4831-+
ISSN
PUB-ID

Zitieren

Woszczyna M, Winter A, Grothe M, et al. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials. 2014;26(28):4831-+.
Woszczyna, M., Winter, A., Grothe, M., Willunat, A., Wundrack, S., Stosch, R., Weimann, T., et al. (2014). All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials, 26(28), 4831-+. doi:10.1002/adma.201400948
Woszczyna, M., Winter, A., Grothe, M., Willunat, A., Wundrack, S., Stosch, R., Weimann, T., Ahlers, F., and Turchanin, A. (2014). All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials 26, 4831-+.
Woszczyna, M., et al., 2014. All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials, 26(28), p 4831-+.
M. Woszczyna, et al., “All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications”, Advanced Materials, vol. 26, 2014, pp. 4831-+.
Woszczyna, M., Winter, A., Grothe, M., Willunat, A., Wundrack, S., Stosch, R., Weimann, T., Ahlers, F., Turchanin, A.: All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications. Advanced Materials. 26, 4831-+ (2014).
Woszczyna, Miroslaw, Winter, Andreas, Grothe, Miriam, Willunat, Annika, Wundrack, Stefan, Stosch, Rainer, Weimann, Thomas, Ahlers, Franz, and Turchanin, Andrey. “All-Carbon Vertical van der Waals Heterostructures: Non-destructive Functionalization of Graphene for Electronic Applications”. Advanced Materials 26.28 (2014): 4831-+.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Markevich AV, Kurasch S, Reimer O, Walker KE, Rance GA, Feng X, Müllen K, Turchanin A, Lebedeva MA, Majouga AG, Nenajdenko VG, Kaiser U, Besley E, Khlobystov AN., ACS Nano 11(3), 2017
PMID: 28191929
Recent progress in van der Waals heterojunctions.
Xia W, Dai L, Yu P, Tong X, Song W, Zhang G, Wang Z., Nanoscale 9(13), 2017
PMID: 28317972
Synthesis, structure and applications of graphene-based 2D heterostructures.
Solís-Fernández P, Bissett M, Ago H., Chem Soc Rev 46(15), 2017
PMID: 28691726
Electron beam controlled covalent attachment of small organic molecules to graphene.
Markevich A, Kurasch S, Lehtinen O, Reimer O, Feng X, Müllen K, Turchanin A, Khlobystov AN, Kaiser U, Besley E., Nanoscale 8(5), 2016
PMID: 26757842
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials.
Zheng Z, Zhang X, Neumann C, Emmrich D, Winter A, Vieker H, Liu W, Lensen M, Gölzhäuser A, Turchanin A., Nanoscale 7(32), 2015
PMID: 26203897

32 References

Daten bereitgestellt von Europe PubMed Central.

Dielectric screening enhanced performance in graphene FET.
Chen F, Xia J, Ferry DK, Tao N., Nano Lett. 9(7), 2009
PMID: 19496554

Ong, Phys. Rev. B 86(), 2012
Weak-localization magnetoresistance and valley symmetry in graphene.
McCann E, Kechedzhi K, Fal'ko VI, Suzuura H, Ando T, Altshuler BL., Phys. Rev. Lett. 97(14), 2006
PMID: 17155283
Weak localization in graphene flakes.
Tikhonenko FV, Horsell DW, Gorbachev RV, Savchenko AK., Phys. Rev. Lett. 100(5), 2008
PMID: 18352407

Jauregui, Sol. St. Comm. 151(), 2011
Field-effect tunneling transistor based on vertical graphene heterostructures.
Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Mishchenko A, Georgiou T, Katsnelson MI, Eaves L, Morozov SV, Peres NM, Leist J, Geim AK, Novoselov KS, Ponomarenko LA., Science 335(6071), 2012
PMID: 22300848
Functional single-layer graphene sheets from aromatic monolayers.
Matei DG, Weber NE, Kurasch S, Wundrack S, Woszczyna M, Grothe M, Weimann T, Ahlers F, Stosch R, Kaiser U, Turchanin A., Adv. Mater. Weinheim 25(30), 2013
PMID: 23716462

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24862387
PubMed | Europe PMC

arXiv: 1406.1966

Suchen in

Google Scholar