Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs)

Wibberg D, Jelonek L, Rupp O, Kröber M, Goesmann A, Grosch R, Pühler A, Schlüter A (2014)
Fungal Biology 118(9-10): 800-813.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Rhizoctonia solani is a soil-borne plant pathogenic fungus of the phylum Basidiomycota. It affects a wide range of agriculturally important crops and hence is responsible for economically relevant crop losses. Transcriptome analysis of the bottom rot pathogen R. solani AG1-1B (isolate 7/3/14) by applying high-throughput sequencing and bioinformatics methods addressing Expressed Sequence Tag (EST) data interpretation provided new insights in expressed genes of this fungus. Two normalized cDNA libraries representing different cultivation conditions of the fungus were sequenced on the 454 FLX (Roche) system. Subsequent to cDNA sequence assembly and quality control, ESTs were analysed applying advanced bioinformatics methods. More than 14 000 transcript isoforms originating from approximately 10 000 predictable R. solani AG1-IB 7/3/14 genes are represented in each dataset. Comparative analyses revealed several differentially expressed genes depending on the growth conditions applied. Determinants with predicted functions in recognition processes between the fungus and the host plant were identified. Moreover, many R. solani AG1-IB ESTs were predicted to encode putative cellulose, pectin, and lignin degrading enzymes. Furthermore, genes playing a possible role in mitogen-activated protein (MAP) kinase cascades, 4-aminobutyric acid (GABA) metabolism, melanin synthesis, plant defence antagonism, phytotoxin, and mycotoxin synthesis were detected. Copyright 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Wibberg D, Jelonek L, Rupp O, et al. Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biology. 2014;118(9-10):800-813.
Wibberg, D., Jelonek, L., Rupp, O., Kröber, M., Goesmann, A., Grosch, R., Pühler, A., et al. (2014). Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biology, 118(9-10), 800-813.
Wibberg, D., Jelonek, L., Rupp, O., Kröber, M., Goesmann, A., Grosch, R., Pühler, A., and Schlüter, A. (2014). Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biology 118, 800-813.
Wibberg, D., et al., 2014. Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biology, 118(9-10), p 800-813.
D. Wibberg, et al., “Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs)”, Fungal Biology, vol. 118, 2014, pp. 800-813.
Wibberg, D., Jelonek, L., Rupp, O., Kröber, M., Goesmann, A., Grosch, R., Pühler, A., Schlüter, A.: Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs). Fungal Biology. 118, 800-813 (2014).
Wibberg, Daniel, Jelonek, Lukas, Rupp, Oliver, Kröber, Magdalena, Goesmann, Alexander, Grosch, Rita, Pühler, Alfred, and Schlüter, Andreas. “Transcriptome analysis of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 applying high-throughput sequencing of expressed sequence tags (ESTs)”. Fungal Biology 118.9-10 (2014): 800-813.
This data publication is cited in the following publications:
This publication cites the following data publications:

4 Citations in Europe PMC

Data provided by Europe PubMed Central.

Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.
Wibberg D, Rupp O, Blom J, Jelonek L, Krober M, Verwaaijen B, Goesmann A, Albaum S, Grosch R, Puhler A, Schluter A., PLoS ONE 10(12), 2015
PMID: 26690577
Secondary metabolites in fungus-plant interactions.
Pusztahelyi T, Holb IJ, Pocsi I., Front Plant Sci 6(), 2015
PMID: 26300892
Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system.
Wibberg D, Rupp O, Jelonek L, Krober M, Verwaaijen B, Blom J, Winkler A, Goesmann A, Grosch R, Puhler A, Schluter A., J. Biotechnol. 203(), 2015
PMID: 25801332

71 References

Data provided by Europe PubMed Central.


Sneh, 1991
Genetic variation and pathogenicity of anastomosis group 2 isolates of Rhizoctonia solani in Australia.
Stodart BJ, Harvey PR, Neate SM, Melanson DL, Scott ES., Mycol. Res. 111(Pt 8), 2007
PMID: 17707626
The COG database: an updated version includes eukaryotes.
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA., BMC Bioinformatics 4(), 2003
PMID: 12969510
Genetic identification of web-blight fungus (Rhizoctonia solani AG1) obtained from European pear using RFLP of rDNA-ITS and RAPD analyses
Toda, Research Bulletin. Faculty of Agriculture, Gifu University (), 1998
RL-SAGE and microarray analysis of the rice transcriptome after Rhizoctonia solani infection
Venu, Molecular Genetics Genomics 278(), 2007
Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen.
Vidhyasekaran P, Ponmalar TR, Samiyappan R, Velazhahan R, Vimala R, Ramanathan A, Paranidharan V, Muthukrishnan S., Phytopathology 87(12), 1997
PMID: IND21234251
Studies on the grouping of Rhizoctonia solani Kuhn pathogenic to upland crops
Watanabe, BULL. Appointed. Exp. 7(), 1966
Functional domains of a pore-forming cardiotoxic protein, volvatoxin A2.
Weng YP, Lin YP, Hsu CI, Lin JY., J. Biol. Chem. 279(8), 2004
PMID: 14645370
Establishment and interpretation of the genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB isolate 7/3/14.
Wibberg D, Jelonek L, Rupp O, Hennig M, Eikmeyer F, Goesmann A, Hartmann A, Borriss R, Grosch R, Puhler A, Schluter A., J. Biotechnol. 167(2), 2013
PMID: 23280342
Identification and characterization of the Cryptococcus neoformans phosphomannose isomerase-encoding gene, MAN1, and its impact on pathogenicity.
Wills EA, Roberts IS, Del Poeta M, Rivera J, Casadevall A, Cox GM, Perfect JR., Mol. Microbiol. 40(3), 2001
PMID: 11359567
GMAP: a genomic mapping and alignment program for mRNA and EST sequences.
Wu TD, Watanabe CK., Bioinformatics 21(9), 2005
PMID: 15728110
Map kinases in fungal pathogens.
Xu JR., Fungal Genet. Biol. 31(3), 2000
PMID: 11273677
dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22645317
The evolution and pathogenic mechanisms of the rice sheath blight pathogen.
Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P., Nat Commun 4(), 2013
PMID: 23361014
Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.).
Zou JH, Pan XB, Chen ZX, Xu JY, Lu JF, Zhai WX, Zhu LH., Theor. Appl. Genet. 101(4), 2000
PMID: IND22078164

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 25209639
PubMed | Europe PMC

Search this title in

Google Scholar