Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia

Fueller E, Schaefer D, Fischer U, Krell P, Stanulla M, Borkhardt A, Slany RK (2014)
PloS one 9(8).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Here we present a novel method "Genomic inverse PCR for exploration of ligated breakpoints" (GIPFEL) that allows the sensitive detection of recurrent chromosomal translocations. This technique utilizes limited amounts of DNA as starting material and relies on PCR based quantification of unique DNA sequences that are created by circular ligation of restricted genomic DNA from translocation bearing cells. Because the complete potential breakpoint region is interrogated, a prior knowledge of the individual, specific interchromosomal fusion site is not required. We validated GIPFEL for the five most common gene fusions associated with childhood leukemia (MLL-AF4, MLL-AF9, MLL-ENL, ETV6-RUNX1, and TCF3-PBX1). A workflow of restriction digest, purification, ligation, removal of linear fragments and precipitation enriching for circular DNA was developed. GIPFEL allowed detection of translocation specific signature sequences down to a 10-4 dilution which is close to the theoretical limit. In a blinded proof-of-principle study utilizing DNA from cell lines and 144 children with B-precursor-ALL associated translocations this method was 100% specific with no false positive results. Sensitivity was 83%, 65%, and 24% for t(4;11), t(9;11) and t(11;19) respectively. Translocation t(12;21) was correctly detected in 64% and t(1;19) in 39% of the cases. In contrast to other methods, the characteristics of GIPFEL make it particularly attractive for prospective studies.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Fueller E, Schaefer D, Fischer U, et al. Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia. PloS one. 2014;9(8).
Fueller, E., Schaefer, D., Fischer, U., Krell, P., Stanulla, M., Borkhardt, A., & Slany, R. K. (2014). Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia. PloS one, 9(8).
Fueller, E., Schaefer, D., Fischer, U., Krell, P., Stanulla, M., Borkhardt, A., and Slany, R. K. (2014). Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia. PloS one 9.
Fueller, E., et al., 2014. Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia. PloS one, 9(8).
E. Fueller, et al., “Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia”, PloS one, vol. 9, 2014.
Fueller, E., Schaefer, D., Fischer, U., Krell, P., Stanulla, M., Borkhardt, A., Slany, R.K.: Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia. PloS one. 9, (2014).
Fueller, Elisa, Schaefer, Daniel, Fischer, Ute, Krell, Pina, Stanulla, Martin, Borkhardt, Arndt, and Slany, Robert K. “Genomic Inverse PCR for Exploration of Ligated Breakpoints (GIPFEL), a New Method to Detect Translocations in Leukemia”. PloS one 9.8 (2014).
This data publication is cited in the following publications:
This publication cites the following data publications:

24 References

Data provided by Europe PubMed Central.

Genetics. A story of swapped ends.
Rowley JD., Science 340(6139), 2013
PMID: 23788787
Biology, risk stratification, and therapy of pediatric acute leukemias: an update.
Pui CH, Carroll WL, Meshinchi S, Arceci RJ., J. Clin. Oncol. 29(5), 2011
PMID: 21220611
Infant acute leukemias show the same biased distribution of ALL1 gene breaks as topoisomerase II related secondary acute leukemias.
Cimino G, Rapanotti MC, Biondi A, Elia L, Lo Coco F, Price C, Rossi V, Rivolta A, Canaani E, Croce CM, Mandelli F, Greaves M., Cancer Res. 57(14), 1997
PMID: 9230194
Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides.
Langer T, Metzler M, Reinhardt D, Viehmann S, Borkhardt A, Reichel M, Stanulla M, Schrappe M, Creutzig U, Ritter J, Leis T, Jacobs U, Harbott J, Beck JD, Rascher W, Repp R., Genes Chromosomes Cancer 36(4), 2003
PMID: 12619163
Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias.
Megonigal MD, Rappaport EF, Jones DH, Kim CS, Nowell PC, Lange BJ, Felix CA., Proc. Natl. Acad. Sci. U.S.A. 94(21), 1997
PMID: 9326653
Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study.
Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A, Arico M, Zimmermann M, Mann G, De Rossi G, Stanulla M, Locatelli F, Basso G, Niggli F, Barisone E, Henze G, Ludwig WD, Haas OA, Cazzaniga G, Koehler R, Silvestri D, Bradtke J, Parasole R, Beier R, van Dongen JJ, Biondi A, Schrappe M., Blood 115(16), 2010
PMID: 20154213
Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study.
Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grumayer R, Moricke A, Parasole R, Zimmermann M, Dworzak M, Buldini B, Reiter A, Basso G, Klingebiel T, Messina C, Ratei R, Cazzaniga G, Koehler R, Locatelli F, Schafer BW, Arico M, Welte K, van Dongen JJ, Gadner H, Biondi A, Conter V., Blood 118(8), 2011
PMID: 21719599
OligoCalc: an online oligonucleotide properties calculator.
Kibbe WA., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17452344
Panhandle polymerase chain reaction amplifies MLL genomic translocation breakpoint involving unknown partner gene.
Felix CA, Kim CS, Megonigal MD, Slater DJ, Jones DH, Spinner NB, Stump T, Hosler MR, Nowell PC, Lange BJ, Rappaport EF., Blood 90(12), 1997
PMID: 9389682
Heterogeneity of breakpoints of 11q23 rearrangements in hematologic malignancies identified with fluorescence in situ hybridization.
Kobayashi H, Espinosa R 3rd, Thirman MJ, Gill HJ, Fernald AA, Diaz MO, Le Beau MM, Rowley JD., Blood 82(2), 1993
PMID: 8329710
Diagnostic tool for the identification of MLL rearrangements including unknown partner genes.
Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S, Schoch C, Jansen MW, van Dongen JJ, Pieters R, Haas OA, Dingermann T, Klingebiel T, Marschalek R., Proc. Natl. Acad. Sci. U.S.A. 102(2), 2005
PMID: 15626757
Translocation junctions in TCF3-PBX1 acute lymphoblastic leukemia/lymphoma cluster near transposable elements.
Rodic N, Zampella JG, Cornish TC, Wheelan SJ, Burns KH., Mob DNA 4(1), 2013
PMID: 24135088
ETV6-AML1 translocation breakpoints cluster near a purine/pyrimidine repeat region in the ETV6 gene.
Thandla SP, Ploski JE, Raza-Egilmez SZ, Chhalliyil PP, Block AW, de Jong PJ, Aplan PD., Blood 93(1), 1999
PMID: 9864173
Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set.
van der Burg M, Beverloo HB, Langerak AW, Wijsman J, van Drunen E, Slater R, van Dongen JJ., Leukemia 13(12), 1999
PMID: 10602437
Cluster analysis of genomic ETV6-RUNX1 (TEL-AML1) fusion sites in childhood acute lymphoblastic leukemia.
von Goessel H, Jacobs U, Semper S, Krumbholz M, Langer T, Keller T, Schrauder A, van der Velden VH, van Dongen JJ, Harbott J, Panzer-Grumayer ER, Schrappe M, Rascher W, Metzler M., Leuk. Res. 33(8), 2009
PMID: 19081626
Chromosome 12p deletions in TEL-AML1 childhood acute lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally.
Wiemels JL, Hofmann J, Kang M, Selzer R, Green R, Zhou M, Zhong S, Zhang L, Smith MT, Marsit C, Loh M, Buffler P, Yeh RF., Cancer Res. 68(23), 2008
PMID: 19047175
Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia.
Wiemels JL, Leonard BC, Wang Y, Segal MR, Hunger SP, Smith MT, Crouse V, Ma X, Buffler PA, Pine SR., Proc. Natl. Acad. Sci. U.S.A. 99(23), 2002
PMID: 12415113
The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia.
Emerenciano M, Meyer C, Mansur MB, Marschalek R, Pombo-de-Oliveira MS; Brazilian Collaborative Study Group of Infant Acute Leukaemia, Thuler LC, Faro A, Andrade C, Pediatrico O, Cordoba JC, Mendonca N, Araujo FN, Burlachini LM, Dorea MD, Brandalise S, Pinheiro VR, Boldrini D, Ramos G, Neto JC, de Brito NP, Carvalho G, Silva AM, de Andrade Agareno JM, Lee ML, Dobbin J, Belo RD, Apa A, Baseggio R, de Souza MS, Mnayjari A, Nobrega AG, Salles TM, Costa Ed, de Souza AM, Rouxinol S, Land M, Coser VM, de Brito PC, Oliveira LS, Bariani C, Pianovski MA, Lafayette TC, Costa I, Bousfield D, Cardoso TC, de Almeida Wernerck F, Lopes LF, Arancibia AM, Melaragno R, Neves G, Cristofani LM, Gurgel RS., Br. J. Haematol. 161(2), 2013
PMID: 23432364
Recurrent involvement of ring-type zinc finger genes in complex molecular rearrangements in childhood acute myelogeneous leukemia with translocation t(10;11)(p12;q23).
Ghosh S, Bartenhagen C, Okpanyi V, Gombert M, Binder V, Teigler-Schlegel A, Bradtke J, Rottgers S, Dugas M, Borkhardt A., Leukemia 27(8), 2013
PMID: 23299548
Chromosome translocations and covert leukemic clones are generated during normal fetal development.
Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C, Hows JM, Navarrete C, Greaves M., Proc. Natl. Acad. Sci. U.S.A. 99(12), 2002
PMID: 12048236
ETV6-RUNX1 transcript is not frequent in early human haematopoiesis.
Lausten-Thomsen U, Hjalgrim H, Marquart H, Lutterodt M, Petersen BL, Schmiegelow K., Eur. J. Haematol. 81(2), 2008
PMID: 18462252
Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates.
Lausten-Thomsen U, Madsen HO, Vestergaard TR, Hjalgrim H, Nersting J, Schmiegelow K., Blood 117(1), 2011
PMID: 20713965

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 25137060
PubMed | Europe PMC

Search this title in

Google Scholar