Towards molecular biomarkers for biogas production from lignocellulose-rich substrates

Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Perez CM (2014)
Anaerobe 29: 10-21.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Biogas production from lignocellulose-rich agricultural residues is gaining increasingly importance in sustainable energy production. Hydrolysis/acidogenesis (H/A) of lignocellulose as the initial rate-limiting step deserves particular optimization. A mixture of straw/hay was methanized applying two-phase digester systems with an initial H/A reactor and a one-stage system at different, meso- and thermophilic temperatures. H/A was intensified with increasing pH values and increasing temperature. H/A fermenters, however, were prone to switch to methanogenic systems at these conditions. Substrate turnover was accelerated in the bi-phasic process but did not reach the methanation efficiency of the single-stage digestion. There was no indication that two different cellulolytic inocula could establish in the given process. Bacterial communities were analyzed applying conventional amplicon clone sequencing targeting the hypervariable 16S rRNA gene region V6-V8 and by metagenome analyses applying direct DNA pyrosequencing without a PCR step. Corresponding results suggested that PCR did not introduce a bias but offered better phylogenetic resolution. Certain Clostridium IV and Prevotella members were most abundant in the H/A system operated at 38 degrees C, certain Clostridium III and Lachnospiraceae bacteria in the 45 degrees C, and certain Clostridium IV and Thermohydrogenium/Thermoanaerobacterium members in the 55 degrees C H/A system. Clostridium III representatives, Lachnospiraceae and Thermotogae dominated in the thermophilic single-stage system, in which also a higher portion of known syntrophic acetate oxidizers was found. Specific (RT-)qPCR systems were designed and applied for the most significant and abundant populations to assess their activity in the different digestion systems. The RT-qPCR results agreed with the DNA based community profiles obtained at the different temperatures. Up to 10(12) 16S rRNA copies mL(-1) were determined in H/A fermenters with prevalence of rRNA of a Ruminococcaceae subgroup. Besides, Thermohydrogenium/Thermoanaerobacterium rRNA prevailed at thermophilic and Prevotellaceae rRNA at mesophilic conditions. The developed (RT)-qPCR systems can be used as biomarkers to optimize biogas production from straw/hay and possibly other lignocellulosic substrates. (C) 2014 Elsevier Ltd. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Lebuhn M, Hanreich A, Klocke M, Schlüter A, Bauer C, Perez CM. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe. 2014;29:10-21.
Lebuhn, M., Hanreich, A., Klocke, M., Schlüter, A., Bauer, C., & Perez, C. M. (2014). Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 29, 10-21.
Lebuhn, M., Hanreich, A., Klocke, M., Schlüter, A., Bauer, C., and Perez, C. M. (2014). Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe 29, 10-21.
Lebuhn, M., et al., 2014. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe, 29, p 10-21.
M. Lebuhn, et al., “Towards molecular biomarkers for biogas production from lignocellulose-rich substrates”, Anaerobe, vol. 29, 2014, pp. 10-21.
Lebuhn, M., Hanreich, A., Klocke, M., Schlüter, A., Bauer, C., Perez, C.M.: Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Anaerobe. 29, 10-21 (2014).
Lebuhn, Michael, Hanreich, Angelika, Klocke, Michael, Schlüter, Andreas, Bauer, Christoph, and Perez, Carmen Marin. “Towards molecular biomarkers for biogas production from lignocellulose-rich substrates”. Anaerobe 29 (2014): 10-21.
This data publication is cited in the following publications:
This publication cites the following data publications:

5 Citations in Europe PMC

Data provided by Europe PubMed Central.

Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I., Biotechnol Biofuels 9(), 2016
PMID: 26839589
Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing.
Ratti RP, Delforno TP, Okada DY, Varesche MB., Microbiol. Res. 173(), 2015
PMID: 25801966
Complete genome sequence of the strain Defluviitoga tunisiensis L3, isolated from a thermophilic, production-scale biogas plant.
Maus I, Cibis KG, Wibberg D, Winkler A, Stolze Y, Konig H, Puhler A, Schluter A., J. Biotechnol. 203(), 2015
PMID: 25801333

43 References

Data provided by Europe PubMed Central.

The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology
Schlüter, J Biotechnol 136(), 2008
The ribosomal database project: improved alignments and new tools for rRNA analysis
Cole, Nucl Acids Res 37(), 2009
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
Quast, Nucl Acids Res 41(D1), 2013
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Kumar S, Nei M, Dudley J, Tamura K., Brief. Bioinformatics 9(4), 2008
PMID: 18417537
Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.
Huber T, Faulkner G, Hugenholtz P., Bioinformatics 20(14), 2004
PMID: 15073015
PRIMROSE: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database
Ashelford, Nucl Acids Res 30(), 2002
Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation
Tang, J Biosci Bioeng 106(2), 2008
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing
Zakrzewski, J Biotech 158(), 2012
Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions.
Li T, Mazeas L, Sghir A, Leblon G, Bouchez T., Environ. Microbiol. 11(4), 2009
PMID: 19128320
Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge
Ito, Biores Technol 123(), 2012
Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2
O-Thong, Int J Hydrogen Energy 33(4), 2008
Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge.
Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K., Int. J. Syst. Evol. Microbiol. 59(Pt 7), 2009
PMID: 19542130
Isolation and characterization of Defluviitoga tunisiensis gen. nov, sp. nov., a novel thermophilic bacterium pertaining to the order Thermotogales, isolated from a mesothermic anaerobic reactor treating cheese whey in Tunisia
Hania, Int J Syst Evol Microbiol 62(), 2011
Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates.
Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S., Appl. Environ. Microbiol. 78(7), 2012
PMID: 22247168
Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.
Bengelsdorf FR, Gerischer U, Langer S, Zak M, Kazda M., FEMS Microbiol. Ecol. 84(1), 2013
PMID: 23228065

AUTHOR UNKNOWN, 0
Molecular methods for the assessment of bacterial viability
Keer, J Microbiol Meth 53(2), 2003

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24785351
PubMed | Europe PMC

Search this title in

Google Scholar