Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling

Piao H, Lachman M, Malfatti S, Sczyrba A, Knierim B, Auer M, Tringe SG, Mackie RI, Yeoman CJ, Hess M (2014)
Frontiers in Microbiology 5(307).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
The rumen microbial ecosystem is known for its biomass-degrading and methane-producing phenotype. Fermentation of recalcitrant plant material, comprised of a multitude of interwoven fibers, necessitates the synergistic activity of diverse microbial taxonomic groups that inhabit the anaerobic rumen ecosystem. Although interspecies hydrogen (H2) transfer, a process during which bacterially generated H2 is transferred to methanogenic Archaea, has obtained significant attention over the last decades, the temporal variation of the different taxa involved in in situ biomass-degradation, H2 transfer and the methanogenesis process remains to be established. Here we investigated the temporal succession of microbial taxa and its effect on fiber composition during rumen incubation using 16S rRNA amplicon sequencing. Switchgrass filled nylon bags were placed in the rumen of a cannulated cow and collected at nine time points for DNA extraction and 16S pyrotag profiling. The microbial community colonizing the air-dried and non-incubated (0 h) switchgrass was dominated by members of the Bacilli (recruiting 63 of the pyrotag reads). During in situ incubation of the switchgrass, two major shifts in the community composition were observed: Bacilli were replaced within 30 min by members belonging to the Bacteroidia and Clostridia, which recruited 34 and 25 of the 16S rRNA reads generated, respectively. A second significant shift was observed after 16 h of rumen incubation, when members of the Spirochaetes and Fibrobacteria classes became more abundant in the fiber-adherent community. During the first 30 min of rumen incubation ~13 of the switchgrass dry matter was degraded, whereas little biomass degradation appeared to have occurred between 30 min and 4 h after the switchgrass was placed in the rumen. Interestingly, methanogenic members of the Euryarchaeota (i.e., Methanobacteria) increased up to 3-fold during this period of reduced biomass-degradation, with peak abundance just before rates of dry matter degradation increased again. We hypothesize that during this period microbial-mediated fibrolysis was temporarily inhibited until H2 was metabolized into CH4 by methanogens. Collectively, our results demonstrate the importance of inter-species interactions for the biomass-degrading and methane-producing phenotype of the rumen microbiome—both microbially facilitated processes with global significance.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Microbiology
Band
5
Zeitschriftennummer
307
ISSN
eISSN
PUB-ID

Zitieren

Piao H, Lachman M, Malfatti S, et al. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology. 2014;5(307).
Piao, H., Lachman, M., Malfatti, S., Sczyrba, A., Knierim, B., Auer, M., Tringe, S. G., et al. (2014). Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology, 5(307). doi:10.3389/fmicb.2014.00307
Piao, H., Lachman, M., Malfatti, S., Sczyrba, A., Knierim, B., Auer, M., Tringe, S. G., Mackie, R. I., Yeoman, C. J., and Hess, M. (2014). Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology 5.
Piao, H., et al., 2014. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology, 5(307).
H. Piao, et al., “Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling”, Frontiers in Microbiology, vol. 5, 2014.
Piao, H., Lachman, M., Malfatti, S., Sczyrba, A., Knierim, B., Auer, M., Tringe, S.G., Mackie, R.I., Yeoman, C.J., Hess, M.: Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Frontiers in Microbiology. 5, (2014).
Piao, Hailan, Lachman, Medora, Malfatti, Stephanie, Sczyrba, Alexander, Knierim, Bernhard, Auer, Manfred, Tringe, Susannah Green, Mackie, Roderick Ian, Yeoman, Carl James, and Hess, Matthias. “Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling”. Frontiers in Microbiology 5.307 (2014).

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling.
Petri RM, Pourazad P, Khiaosa-Ard R, Klevenhusen F, Metzler-Zebeli BU, Zebeli Q., PLoS One 12(8), 2017
PMID: 28763489
Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing.
Cheng Y, Wang Y, Li Y, Zhang Y, Liu T, Wang Y, Sharpton TJ, Zhu W., Front Microbiol 8(), 2017
PMID: 29163444
Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass.
Huws SA, Edwards JE, Creevey CJ, Rees Stevens P, Lin W, Girdwood SE, Pachebat JA, Kingston-Smith AH., FEMS Microbiol Ecol 92(1), 2016
PMID: 26542074
Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi.
Chaucheyras-Durand F, Ameilbonne A, Bichat A, Mosoni P, Ossa F, Forano E., J Appl Microbiol 120(3), 2016
PMID: 26600313
Temporal Metagenomic and Metabolomic Characterization of Fresh Perennial Ryegrass Degradation by Rumen Bacteria.
Mayorga OL, Kingston-Smith AH, Kim EJ, Allison GG, Wilkinson TJ, Hegarty MJ, Theodorou MK, Newbold CJ, Huws SA., Front Microbiol 7(), 2016
PMID: 27917166
Exploring the sheep rumen microbiome for carbohydrate-active enzymes.
Lopes LD, de Souza Lima AO, Taketani RG, Darias P, da Silva LR, Romagnoli EM, Louvandini H, Abdalla AL, Mendes R., Antonie Van Leeuwenhoek 108(1), 2015
PMID: 25900454
Insights into the bacterial community and its temporal succession during the fermentation of wine grapes.
Piao H, Hawley E, Kopf S, DeScenzo R, Sealock S, Henick-Kling T, Hess M., Front Microbiol 6(), 2015
PMID: 26347718
Intra- and inter-species interactions in microbial communities.
Comolli LR., Front Microbiol 5(), 2014
PMID: 25505455

31 References

Daten bereitgestellt von Europe PubMed Central.

ACETATE METABOLISM IN THE RUMINANT.
SABINE JR, JOHNSON BC., J. Biol. Chem. 239(), 1964
PMID: 14114878
Metabolic interactions between anaerobic bacteria in methanogenic environments.
Stams AJ., Antonie Van Leeuwenhoek 66(1-3), 1994
PMID: 7747937
Anaerobic fungi in the digestive tract of mammalian herbivores and their potential for exploitation.
Theodorou MK, Mennim G, Davies DR, Zhu WY, Trinci AP, Brookman JL., Proc Nutr Soc 55(3), 1996
PMID: 9004333
Why don't ruminal bacteria digest cellulose faster?
Weimer PJ., J. Dairy Sci. 79(8), 1996
PMID: 8880475

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25101058
PubMed | Europe PMC

Suchen in

Google Scholar