Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity

Dongmo AB, Nkeng-Efouet PA, Devkota KP, Wegener JW, Sewald N, Wagner H, Vierling W (2014)
Phytomedicine 21(6): 787-792.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Tetra-acetylajugasterone C (TAAC) was found to be one of the naturally occurring compounds of the Cameroonian medicinal plant Vitex cienkowskii which is responsible for a vasorelaxant activity of an extract of this plant. The evaluation of the underlying mechanisms for the relaxing effect of TAAC was determined using aortic rings of rats and mice. TAAC produced a concentration-dependent relaxation in rat artery rings pre-contracted with 1 mu M noradrenaline (IC50: 8.40 mu M) or 60 mM KCl (IC50: 36.30 mu M). The nitric oxide synthase inhibitor L-NAME (100 mu M) and the soluble guanylate cyclase inhibitor ODQ (10 mu M) significantly attenuated the vasodilatory effect of TAAC. TAAC also exerted a relaxing effect in aorta of wild-type mice (cGKI(+/+); IC50=13.04 mu M) but a weaker effect in aorta of mice lacking cGMP-dependent protein kinase I (cGKI(-/-); IC50=36.12 mu M). The involvement of calcium channels was studied in rings pre-incubated in calcium-free buffer and primed with 1 mu M noradrenaline prior to addition of calcium to elicit contraction. TAAC (100 mu M) completely inhibited the resulting calcium-induced vasoconstriction. The same concentration of TAAC showed a stronger effect on the tonic than on the phasic component of noradrenaline-induced contraction. This study shows that TAAC, a newly detected constituent of Vitex cienkowskii contributes to the relaxing effect of an extract of the plant. The effect is partially mediated by the involvement of the NO/cGMP pathway of the smooth muscle but additionally inhibition of calcium influx into the cell may play a role. (C) 2014 Elsevier GmbH. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Dongmo AB, Nkeng-Efouet PA, Devkota KP, et al. Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity. Phytomedicine. 2014;21(6):787-792.
Dongmo, A. B., Nkeng-Efouet, P. A., Devkota, K. P., Wegener, J. W., Sewald, N., Wagner, H., & Vierling, W. (2014). Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity. Phytomedicine, 21(6), 787-792.
Dongmo, A. B., Nkeng-Efouet, P. A., Devkota, K. P., Wegener, J. W., Sewald, N., Wagner, H., and Vierling, W. (2014). Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity. Phytomedicine 21, 787-792.
Dongmo, A.B., et al., 2014. Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity. Phytomedicine, 21(6), p 787-792.
A.B. Dongmo, et al., “Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity”, Phytomedicine, vol. 21, 2014, pp. 787-792.
Dongmo, A.B., Nkeng-Efouet, P.A., Devkota, K.P., Wegener, J.W., Sewald, N., Wagner, H., Vierling, W.: Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity. Phytomedicine. 21, 787-792 (2014).
Dongmo, Alain Bertrand, Nkeng-Efouet, Pepin Alango, Devkota, Krishna Prasad, Wegener, Joerg W., Sewald, Norbert, Wagner, Hildebert, and Vierling, Wolfgang. “Tetra-acetylajugasterone a new constituent of Vitex cienkowskii with vasorelaxant activity”. Phytomedicine 21.6 (2014): 787-792.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 References

Data provided by Europe PubMed Central.


Arbonnier, 2004
Vascular Smooth Muscle: Dual Effect of Calcium.
Bohr DF., Science 139(3555), 1963
PMID: 17788298

Correa, 1926
Mechanisms of calcium antagonist-induced vasodilation.
Cauvin C, Loutzenhiser R, Van Breemen C., Annu. Rev. Pharmacol. Toxicol. 23(), 1983
PMID: 6307126
Pentacyclic triterpenoids and ceramide mediate the vasorelaxant activity of Vitex cienkowskii via involvement of NO/cGMP pathway in isolated rat aortic rings
Dongmo, J. Ethnopharmacol. 133(), 2011

Eliel, 1994
TRP channels in hypertension.
Firth AL, Remillard CV, Yuan JX., Biochim. Biophys. Acta 1772(8), 2007
PMID: 17399958
[Arterial hypertension in sub-Saharan Africa. Update and perspectives].
Fourcade L, Paule P, Mafart B., Med Trop (Mars) 67(6), 2007
PMID: 18300516
Calcium antagonism and calcium entry blockade.
Godfraind T, Miller R, Wibo M., Pharmacol. Rev. 38(4), 1986
PMID: 2432624
Structure of ajugasterone C, a phytoecdysone with an 11-hydroxy-group
Imai, J. Chem. Soc. D 10(), 1969
Role of smooth muscle cGMP/cGKI signaling in murine vascular restenosis.
Lukowski R, Weinmeister P, Bernhard D, Feil S, Gotthardt M, Herz J, Massberg S, Zernecke A, Weber C, Hofmann F, Feil R., Arterioscler. Thromb. Vasc. Biol. 28(7), 2008
PMID: 18420996
TRP channel proteins and signal transduction.
Minke B, Cook B., Physiol. Rev. 82(2), 2002
PMID: 11917094
Physiological roles and properties of potassium channels in arterial smooth muscle.
Nelson MT, Quayle JM., Am. J. Physiol. 268(4 Pt 1), 1995
PMID: 7733230

Nkeng-Efouet, 1987
Signaling through NO and cGMP-dependent protein kinases.
Schlossmann J, Feil R, Hofmann F., Ann. Med. 35(1), 2003
PMID: 12693609
Ecdysteroids from Vitex pinnata
Suksamrarn, Phytochemistry 32(), 1993
Investigation of the pharmaceutical and pharmacological equivalence of different Hawthorn extracts.
Vierling W, Brand N, Gaedcke F, Sensch KH, Schneider E, Scholz M., Phytomedicine 10(1), 2003
PMID: 12622458
Sarcoplasmic reticulum function in smooth muscle.
Wray S, Burdyga T., Physiol. Rev. 90(1), 2010
PMID: 20086075
Multiple ryanodine receptor subtypes and heterogeneous ryanodine receptor-gated Ca2+ stores in pulmonary arterial smooth muscle cells.
Yang XR, Lin MJ, Yip KP, Jeyakumar LH, Fleischer S, Leung GP, Sham JS., Am. J. Physiol. Lung Cell Mol. Physiol. 289(2), 2005
PMID: 15863441

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24680617
PubMed | Europe PMC

Search this title in

Google Scholar