A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments

Theunissen L, Hertrich M, Wiljes C, Zell E, Behler C, Krause AF, Bekemeier H, Cimiano P, Botsch M, Dürr V (2014)
In: Living Machines 2014. Duff A (Ed); Lecture Notes in Artificial Intelligence, 8608. Springer: 308-319.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Herausgeber
Abstract / Bemerkung
In recent years, experimental data on natural, un-restrained locomo-tion of animals has strongly increased in complexity and quantity. This is due to novel motion-capture techniques, but also to the combination of several meth-ods such as electromyography or force measurements. Since much of this data is of great value for the development, modeling and benchmarking of technical locomotion systems, suitable data management, documentation and visualiza-tion are essential. Here, we usan example of comparative kinematics of climb-ing insects to propose a data format that is equally suitable for scientific analy-sis and sharing through web repositories. Two data models are used: a relational model (SQL) for efficient data management and mining, and the Resource De-scription Framework (RDF), releasing data according to the Linked Data prin-ciples and connecting it to other datasets on the web. Finally, two visualization options are presented, using either a photo-realistic rendering or a plain but ver-satile cylinder-based 3D-model.
Erscheinungsjahr
Titel des Konferenzbandes
Living Machines 2014
Band
8608
Seite
308-319
Konferenz
Living Machines 2014
Konferenzort
Milan, Italy
Konferenzdatum
2014-07-30 – 2014-08-01
PUB-ID

Zitieren

Theunissen L, Hertrich M, Wiljes C, et al. A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments. In: Duff A, ed. Living Machines 2014. Lecture Notes in Artificial Intelligence. Vol 8608. Springer; 2014: 308-319.
Theunissen, L., Hertrich, M., Wiljes, C., Zell, E., Behler, C., Krause, A. F., Bekemeier, H., et al. (2014). A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments. In A. Duff (Ed.), Lecture Notes in Artificial Intelligence: Vol. 8608. Living Machines 2014 (pp. 308-319). Springer.
Theunissen, L., Hertrich, M., Wiljes, C., Zell, E., Behler, C., Krause, A. F., Bekemeier, H., Cimiano, P., Botsch, M., and Dürr, V. (2014). “A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments” in Living Machines 2014, Duff, A. ed. Lecture Notes in Artificial Intelligence, vol. 8608, (Springer), 308-319.
Theunissen, L., et al., 2014. A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments. In A. Duff, ed. Living Machines 2014. Lecture Notes in Artificial Intelligence. no.8608 Springer, pp. 308-319.
L. Theunissen, et al., “A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments”, Living Machines 2014, A. Duff, ed., Lecture Notes in Artificial Intelligence, vol. 8608, Springer, 2014, pp.308-319.
Theunissen, L., Hertrich, M., Wiljes, C., Zell, E., Behler, C., Krause, A.F., Bekemeier, H., Cimiano, P., Botsch, M., Dürr, V.: A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments. In: Duff, A. (ed.) Living Machines 2014. Lecture Notes in Artificial Intelligence. 8608, p. 308-319. Springer (2014).
Theunissen, Leslie, Hertrich, Michael, Wiljes, Cord, Zell, Eduard, Behler, Christian, Krause, André Frank, Bekemeier, Holger, Cimiano, Philipp, Botsch, Mario, and Dürr, Volker. “A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments”. Living Machines 2014. Ed. A. Duff. Springer, 2014.Vol. 8608. Lecture Notes in Artificial Intelligence. 308-319.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar