Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL

Barden S, Schomburg B, Conradi J, Backert S, Sewald N, Niemann H (2014)
Acta crystallographica. Section D, Biological crystallography 70(Pt 5): 1391-1400.

Journal Article | Published | English

No fulltext has been uploaded

Author
Abstract
A new crystal form of the Helicobacter pylori type IV secretion system (T4SS) pilus protein CagL is described here. In contrast to two previously reported monomeric structures, CagL forms a three-dimensional domain-swapped dimer. CagL dimers can arise during refolding from inclusion bodies or can form spontaneously from purified monomeric CagL in the crystallization conditions. Monomeric CagL forms a three-helix bundle, with which the N-terminal helix is only loosely associated. In the new crystal form, the N-terminal helix is missing. The domain swap is owing to exchange of the C-terminal helix between the two protomers of a dimer. A loop-to-helix transition results in a long helix of 108 amino acids comprising the penultimate and the last helix of the monomer. The RGD motif of dimeric CagL adopts an α-helical conformation. In contrast to the previously reported structures, the conserved and functionally important C-terminal hexapeptide is resolved. It extends beyond the three-helix bundle as an exposed helical appendage. This new crystal form contributes to the molecular understanding of CagL by highlighting rigid and flexible regions in the protein and by providing the first view of the C-terminus. Based on the structural features, a previously unrecognized homology between CagL and CagI is discussed.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Barden S, Schomburg B, Conradi J, Backert S, Sewald N, Niemann H. Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography. 2014;70(Pt 5):1391-1400.
Barden, S., Schomburg, B., Conradi, J., Backert, S., Sewald, N., & Niemann, H. (2014). Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography, 70(Pt 5), 1391-1400.
Barden, S., Schomburg, B., Conradi, J., Backert, S., Sewald, N., and Niemann, H. (2014). Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography 70, 1391-1400.
Barden, S., et al., 2014. Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography, 70(Pt 5), p 1391-1400.
S. Barden, et al., “Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL”, Acta crystallographica. Section D, Biological crystallography, vol. 70, 2014, pp. 1391-1400.
Barden, S., Schomburg, B., Conradi, J., Backert, S., Sewald, N., Niemann, H.: Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL. Acta crystallographica. Section D, Biological crystallography. 70, 1391-1400 (2014).
Barden, Stephan, Schomburg, Benjamin, Conradi, Jens, Backert, Steffen, Sewald, Norbert, and Niemann, Hartmut. “Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori type IV secretion system pilus protein CagL”. Acta crystallographica. Section D, Biological crystallography 70.Pt 5 (2014): 1391-1400.
This data publication is cited in the following publications:
This publication cites the following data publications:

2 Citations in Europe PMC

Data provided by Europe PubMed Central.

Genes required for assembly of pili associated with the Helicobacter pylori cag type IV secretion system.
Johnson EM, Gaddy JA, Voss BJ, Hennig EE, Cover TL., Infect. Immun. 82(8), 2014
PMID: 24891108

50 References

Data provided by Europe PubMed Central.


Joosten, Nucleic Acids Res. 39(), 2010

Kabsch, Acta Cryst. A 32(), 1976

Kabsch, Acta Cryst. D 66(), 2010
Inference of macromolecular assemblies from crystalline state.
Krissinel E, Henrick K., J. Mol. Biol. 372(3), 2007
PMID: 17681537
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
Protein subassemblies of the Helicobacter pylori Cag type IV secretion system revealed by localization and interaction studies.
Kutter S, Buhrdorf R, Haas J, Schneider-Brachert W, Haas R, Fischer W., J. Bacteriol. 190(6), 2008
PMID: 18178731

Kwok, Nature (London) 449(), 2007
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036
3D domain swapping: as domains continue to swap.
Liu Y, Eisenberg D., Protein Sci. 11(6), 2002
PMID: 12021428
Phaser crystallographic software.
McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ., J Appl Crystallogr 40(Pt 4), 2007
PMID: 19461840

Painter, J. Appl. Cryst. 39(), 2006
Fibronectin at a glance.
Pankov R, Yamada KM., J. Cell. Sci. 115(Pt 20), 2002
PMID: 12244123
CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL.
Pham KT, Weiss E, Jimenez Soto LF, Breithaupt U, Haas R, Fischer W., PLoS ONE 7(4), 2012
PMID: 22493745
The unfolding story of three-dimensional domain swapping.
Rousseau F, Schymkowitz JW, Itzhaki LS., Structure 11(3), 2003
PMID: 12623012
Implications of 3D domain swapping for protein folding, misfolding and function.
Rousseau F, Schymkowitz J, Itzhaki LS., Adv. Exp. Med. Biol. 747(), 2012
PMID: 22949116
Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues.
Rousseau F, Schymkowitz JW, Wilkinson HR, Itzhaki LS., Proc. Natl. Acad. Sci. U.S.A. 98(10), 2001
PMID: 11344301
Tricine-SDS-PAGE.
Schagger H., Nat Protoc 1(1), 2006
PMID: 17406207
Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly.
Schlunegger MP, Bennett MJ, Eisenberg D., Adv. Protein Chem. 50(), 1997
PMID: 9338079
Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface.
Shaffer CL, Gaddy JA, Loh JT, Johnson EM, Hill S, Hennig EE, McClain MS, McDonald WH, Cover TL., PLoS Pathog. 7(9), 2011
PMID: 21909278
How Helicobacter pylori infection controls gastric acid secretion.
Smolka AJ, Backert S., J. Gastroenterol. 47(6), 2012
PMID: 22565637
Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium.
Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ., Proc. Natl. Acad. Sci. U.S.A. 102(3), 2005
PMID: 15644442
Helicobacter pylori CagL dependent induction of gastrin expression via a novel αvβ5-integrin-integrin linked kinase signalling complex.
Wiedemann T, Hofbaur S, Tegtmeyer N, Huber S, Sewald N, Wessler S, Backert S, Rieder G., Gut 61(7), 2012
PMID: 22287591

Winn, Acta Cryst. D 67(), 2011

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24816107
PubMed | Europe PMC

Search this title in

Google Scholar