Assessing redox state and reactive oxygen species in circadian rhythmicity

König K, Galliardt H, Moore M, Treffon P, Seidel T, Dietz K-J (2014)
Methods in molecular biology (Clifton, N.J.) 1158: 239-271.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Redox homeostasis is an important parameter of cell function and cell signaling. Spatial and temporal alterations of redox state control metabolism, developmental processes, as well as acute responses to environmental stresses and stress acclimation. Redox homeostasis is also linked to the circadian clock. This chapter introduces methods to assess important redox parameters such as the low molecular weight redox metabolites glutathione and ascorbate, their amount and redox state, and H2O2 as reactive oxygen species. In vivo redox cell imaging is described by use of the reduction-oxidation sensitive green fluorescent protein (roGFP). Finally, on the level of posttranslational redox modifications of proteins, methods are shown to assess hyperoxidation of 2-cysteine peroxiredoxin and glutathionylation of peroxiredoxin IIE. The redox state of 2-cysteine peroxiredoxin has been identified as a transcription-independent marker of circadian rhythmicity.
Publishing Year
ISSN
PUB-ID

Cite this

König K, Galliardt H, Moore M, Treffon P, Seidel T, Dietz K-J. Assessing redox state and reactive oxygen species in circadian rhythmicity. Methods in molecular biology (Clifton, N.J.). 2014;1158:239-271.
König, K., Galliardt, H., Moore, M., Treffon, P., Seidel, T., & Dietz, K. - J. (2014). Assessing redox state and reactive oxygen species in circadian rhythmicity. Methods in molecular biology (Clifton, N.J.), 1158, 239-271.
König, K., Galliardt, H., Moore, M., Treffon, P., Seidel, T., and Dietz, K. - J. (2014). Assessing redox state and reactive oxygen species in circadian rhythmicity. Methods in molecular biology (Clifton, N.J.) 1158, 239-271.
König, K., et al., 2014. Assessing redox state and reactive oxygen species in circadian rhythmicity. Methods in molecular biology (Clifton, N.J.), 1158, p 239-271.
K. König, et al., “Assessing redox state and reactive oxygen species in circadian rhythmicity”, Methods in molecular biology (Clifton, N.J.), vol. 1158, 2014, pp. 239-271.
König, K., Galliardt, H., Moore, M., Treffon, P., Seidel, T., Dietz, K.-J.: Assessing redox state and reactive oxygen species in circadian rhythmicity. Methods in molecular biology (Clifton, N.J.). 1158, 239-271 (2014).
König, Katharina, Galliardt, Helena, Moore, Marten, Treffon, Patrick, Seidel, Thorsten, and Dietz, Karl-Josef. “Assessing redox state and reactive oxygen species in circadian rhythmicity”. Methods in molecular biology (Clifton, N.J.) 1158 (2014): 239-271.
This data publication is cited in the following publications:
This publication cites the following data publications:

1 Citation in Europe PMC

Data provided by Europe PubMed Central.

Melatonin: an ancient molecule that makes oxygen metabolically tolerable.
Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ., J. Pineal Res. 59(4), 2015
PMID: 26272235

Export

0 Marked Publications

Open Data PUB

Sources

PMID: 24792057
PubMed | Europe PMC

Search this title in

Google Scholar