Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects?

Sandin F, Khan AI, Dyer AG, Amin AHM, Indiveri G, Chicca E, Osipov E (2014)
Journal of Software Engineering and Applications 7(5): 387-395.

Download
OA
Journal Article | Published | English
Author
; ; ; ; ; ;
Abstract
Vision systems that enable collision avoidance, localization and navigation in complex and uncertain environments are common in biology, but are extremely challenging to mimic in artificial electronic systems, in particular when size and power limitations apply. The development of neuromorphic electronic systems implementing models of biological sensory-motor systems in silicon is one promising approach to addressing these challenges. Concept learning is a central part of animal cognition that enables appropriate motor response in novel situations by generalization of former experience, possibly from a few examples. These aspects make concept learning a challenging and important problem. Learning methods in computer vision are typically inspired by mammals, but recent studies of insects motivate an interesting complementary research direction. There are several remarkable results showing that honeybees can learn to master abstract concepts, providing a road map for future work to allow direct comparisons between bio-inspired computing architectures and information processing in miniaturized “real” brains. Considering that the brain of a bee has less than 0.01% as many neurons as a human brain, the task to infer a minimal architecture and mechanism of concept learning from studies of bees appears well motivated. The relatively low complexity of insect sensory-motor systems makes them an interesting model for the further development of bio-inspired computing architectures, in particular for resource-constrained applications such as miniature robots, wireless sensors and handheld or wearable devices. Work in that direction is a natural step towards understanding and making use of prototype circuits for concept learning, which eventually may also help us to understand the more complex learning circuits of the human brain. By adapting concept learning mechanisms to a polymorphic computing framework we could possibly create large-scale decentralized computer vision systems, for example in the form of wireless sensor networks.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Sandin F, Khan AI, Dyer AG, et al. Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects? Journal of Software Engineering and Applications. 2014;7(5):387-395.
Sandin, F., Khan, A. I., Dyer, A. G., Amin, A. H. M., Indiveri, G., Chicca, E., & Osipov, E. (2014). Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects? Journal of Software Engineering and Applications, 7(5), 387-395.
Sandin, F., Khan, A. I., Dyer, A. G., Amin, A. H. M., Indiveri, G., Chicca, E., and Osipov, E. (2014). Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects? Journal of Software Engineering and Applications 7, 387-395.
Sandin, F., et al., 2014. Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects? Journal of Software Engineering and Applications, 7(5), p 387-395.
F. Sandin, et al., “Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects?”, Journal of Software Engineering and Applications, vol. 7, 2014, pp. 387-395.
Sandin, F., Khan, A.I., Dyer, A.G., Amin, A.H.M., Indiveri, G., Chicca, E., Osipov, E.: Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects? Journal of Software Engineering and Applications. 7, 387-395 (2014).
Sandin, F., Khan, A. I., Dyer, A. G., Amin, A. H. M., Indiveri, G., Chicca, Elisabetta, and Osipov, E. “Concept Learning in Neuromorphic Vision Systems: What Can We Learn from Insects?”. Journal of Software Engineering and Applications 7.5 (2014): 387-395.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2014-05-13 14:53:28

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar