Culture bag systems for clinical applications of adult human neural crest-derived stem cells

Greiner J, Grunwald L-M, Müller J, Sudhoff H, Widera D, Kaltschmidt C, Kaltschmidt B (2014)
Stem Cell Research & Therapy 5(2): 34.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Introduction Facing the challenging treatment of neurodegenerative diseases as well as complex craniofacial injuries such as those common after cancer therapy, the field of regenerative medicine increasingly relies on stem cell transplantation strategies. Here, neural crest-derived stem cells (NCSCs) offer many promising applications, although scale up of clinical-grade processes prior to potential transplantations is currently limiting. In this study, we aimed to establish a clinical-grade, cost-reducing cultivation system for NCSCs isolated from the adult human nose using cGMP-grade Afc-FEP bags. Methods We cultivated human neural crest-derived stem cells from inferior turbinate (ITSCs) in a cell culture bag system using Afc-FEP bags in human blood plasma-supplemented medium. Investigations of viability, proliferation and expression profile of bag-cultured ITSCs were followed by DNA-content and telomerase activity determination. Cultivated ITSCs were introduced to directed in vitro differentiation assays to assess their potential for mesodermal and ectodermal differentiation. Mesodermal differentiation was determined using an enzyme activity assay (alkaline phosphatase, ALP), respective stainings (Alizarin Red S, Von Kossa and Oil Red O), and RT-PCR, while immunocytochemistry and synaptic vesicle recycling were applied to assay neuroectodermal differentiation of ITSCs. Results When cultivated within Afc-FEP bags, ITSCs grew three-dimensionally in a human blood plasma-derived matrix, thereby showing unchanged morphology, proliferation capability, viability and expression profile in comparison to three dimensionally-cultured ITSCs growing in standard cell culture plastics. Genetic stability of bag-cultured ITSCs was further accompanied by unchanged telomerase activity. Importantly, ITSCs retained their potential to differentiate into mesodermal cell types, particularly including ALP-active, Alizarin Red S-, and Von Kossa-positive osteogenic cell types, as well as adipocytes positive in Oil Red O assays. Bag culture further did not affect the potential of ITSCs to undergo differentiation into neuroectodermal cell types coexpressing β-III-tubulin and MAP2 and exhibiting the capability for synaptic vesicle recycling. Conclusions Here, we report for the first time the successful cultivation of human NCSCs within cGMP-grade Afc-FEP bags using a human blood plasma-supplemented medium. Our findings particularly demonstrate the unchanged differentiation capability and genetic stability of the cultivated NCSCs, suggesting the great potential of this culture system for future medical applications in the field of regenerative medicine.
Erscheinungsjahr
Zeitschriftentitel
Stem Cell Research & Therapy
Band
5
Zeitschriftennummer
2
Seite
34
ISSN
PUB-ID

Zitieren

Greiner J, Grunwald L-M, Müller J, et al. Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy. 2014;5(2):34.
Greiner, J., Grunwald, L. - M., Müller, J., Sudhoff, H., Widera, D., Kaltschmidt, C., & Kaltschmidt, B. (2014). Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy, 5(2), 34. doi:10.1186/scrt422
Greiner, J., Grunwald, L. - M., Müller, J., Sudhoff, H., Widera, D., Kaltschmidt, C., and Kaltschmidt, B. (2014). Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy 5, 34.
Greiner, J., et al., 2014. Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy, 5(2), p 34.
J. Greiner, et al., “Culture bag systems for clinical applications of adult human neural crest-derived stem cells”, Stem Cell Research & Therapy, vol. 5, 2014, pp. 34.
Greiner, J., Grunwald, L.-M., Müller, J., Sudhoff, H., Widera, D., Kaltschmidt, C., Kaltschmidt, B.: Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy. 5, 34 (2014).
Greiner, Johannes, Grunwald, Lena-Marie, Müller, Janine, Sudhoff, Holger, Widera, Darius, Kaltschmidt, Christian, and Kaltschmidt, Barbara. “Culture bag systems for clinical applications of adult human neural crest-derived stem cells”. Stem Cell Research & Therapy 5.2 (2014): 34.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2014-04-15T07:25:01Z

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells.
Schürmann M, Brotzmann V, Bütow M, Greiner J, Höving A, Kaltschmidt C, Kaltschmidt B, Sudhoff H., Stem Cell Rev 14(2), 2018
PMID: 29243108
The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry.
Niibe K, Zhang M, Nakazawa K, Morikawa S, Nakagawa T, Matsuzaki Y, Egusa H., Jpn Dent Sci Rev 53(2), 2017
PMID: 28479933
Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells.
Hofemeier AD, Hachmeister H, Pilger C, Schürmann M, Greiner JF, Nolte L, Sudhoff H, Kaltschmidt C, Huser T, Kaltschmidt B., Sci Rep 6(), 2016
PMID: 27225821
Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats.
Müller J, Ossig C, Greiner JF, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B., Stem Cells Transl Med 4(1), 2015
PMID: 25479965
Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation.
Schürmann M, Wolff A, Widera D, Hauser S, Heimann P, Hütten A, Kaltschmidt C, Kaltschmidt B., Stem Cell Res 13(1), 2014
PMID: 24858494

33 References

Daten bereitgestellt von Europe PubMed Central.

Regenerating the heart.
Laflamme MA, Murry CE., Nat. Biotechnol. 23(7), 2005
PMID: 16003373
N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible.
Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M, Olonen A, Salo H, Lehenkari P, Tuuri T, Otonkoski T, Natunen J, Saarinen J, Laine J., Stem Cells 25(1), 2006
PMID: 17008421
Autologous transplant: microbial contamination of hematopoietic stem cell products.
Almeida ID, Schmalfuss T, Rohsig LM, Goldani LZ., Braz J Infect Dis 16(4), 2012
PMID: 22846122
Microbiological control in stem cell banks: approaches to standardisation.
Cobo F, Stacey GN, Hunt C, Cabrera C, Nieto A, Montes R, Cortes JL, Catalina P, Barnie A, Concha A., Appl. Microbiol. Biotechnol. 68(4), 2005
PMID: 16012832
FDA regulation of stem cell-based products.
Fink DW Jr., Science 324(5935), 2009
PMID: 19556496
Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial.
de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R, Karandish S, Sadeghi T, Peled T, Grynspan F, Daniely Y, Nagler A, Shpall EJ., Bone Marrow Transplant. 41(9), 2008
PMID: 18209724
Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial.
Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G., Clin. Cancer Res. 10(11), 2004
PMID: 15173076
Schwann cells can be reprogrammed to multipotency by culture.
Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 20(12), 2011
PMID: 21466279
Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate.
Hauser S, Widera D, Qunneis F, Muller J, Zander C, Greiner J, Strauss C, Luningschror P, Heimann P, Schwarze H, Ebmeyer J, Sudhoff H, Arauzo-Bravo MJ, Greber B, Zaehres H, Scholer H, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 21(5), 2012
PMID: 22128806
Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics.
Greiner JF, Hauser S, Widera D, Muller J, Qunneis F, Zander C, Martin I, Mallah J, Schuetzmann D, Prante C, Schwarze H, Prohaska W, Beyer A, Rott K, Hutten A, Golzhauser A, Sudhoff H, Kaltschmidt C, Kaltschmidt B., Eur Cell Mater 22(), 2011
PMID: 22179938
FDA regulation of stem-cell-based therapies.
Halme DG, Kessler DA., N. Engl. J. Med. 355(16), 2006
PMID: 17050899
NS21: re-defined and modified supplement B27 for neuronal cultures.
Chen Y, Stevens B, Chang J, Milbrandt J, Barres BA, Hell JW., J. Neurosci. Methods 171(2), 2008
PMID: 18471889
DNA measurement and cell cycle analysis by flow cytometry.
Nunez R., Curr Issues Mol Biol 3(3), 2001
PMID: 11488413
Nonradioactive detection of telomerase activity using the telomeric repeat amplification protocol.
Herbert BS, Hochreiter AE, Wright WE, Shay JW., Nat Protoc 1(3), 2006
PMID: 17406450
1,8-Cineol inhibits nuclear translocation of NF-kappaB p65 and NF-kappaB-dependent transcriptional activity
AUTHOR UNKNOWN, 1833
Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells.
Nguyen TD, Widera D, Greiner J, Muller J, Martin I, Slotta C, Hauser S, Kaltschmidt C, Kaltschmidt B., Biol. Chem. 394(12), 2013
PMID: 24084358
Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I., Stem Cells 22(5), 2004
PMID: 15342932
Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities.
Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR., Stem Cells Dev. 17(6), 2008
PMID: 18393638
Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery.
Widera D, Grimm WD, Moebius JM, Mikenberg I, Piechaczek C, Gassmann G, Wolff NA, Thevenod F, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 16(3), 2007
PMID: 17610375
Adult palatum as a novel source of neural crest-related stem cells.
Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, Saldamli B, Sudhoff H, Sader R, Kaltschmidt C, Kaltschmidt B., Stem Cells 27(8), 2009
PMID: 19544446
Isolation and characterization of multipotent skin-derived precursors from human skin.
Toma JG, McKenzie IA, Bagli D, Miller FD., Stem Cells 23(6), 2005
PMID: 15917469
The adult hair follicle: cradle for pluripotent neural crest stem cells.
Sieber-Blum M, Grim M., Birth Defects Res. C Embryo Today 72(2), 2004
PMID: 15269890
A multipotent neural crest-derived progenitor cell population is resident within the oral mucosa lamina propria.
Davies LC, Locke M, Webb RD, Roberts JT, Langley M, Thomas DW, Archer CW, Stephens P., Stem Cells Dev. 19(6), 2010
PMID: 20132052
A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.
Hunt DP, Morris PN, Sterling J, Anderson JA, Joannides A, Jahoda C, Compston A, Chandran S., Stem Cells 26(1), 2007
PMID: 17901404
Human epidermal neural crest stem cells (hEPI-NCSC)--characterization and directed differentiation into osteocytes and melanocytes.
Clewes O, Narytnyk A, Gillinder KR, Loughney AD, Murdoch AP, Sieber-Blum M., Stem Cell Rev 7(4), 2011
PMID: 21455606
The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties.
Delorme B, Nivet E, Gaillard J, Haupl T, Ringe J, Deveze A, Magnan J, Sohier J, Khrestchatisky M, Roman FS, Charbord P, Sensebe L, Layrolle P, Feron F., Stem Cells Dev. 19(6), 2010
PMID: 19905894
Adult craniofacial stem cells: sources and relation to the neural crest.
Kaltschmidt B, Kaltschmidt C, Widera D., Stem Cell Rev 8(3), 2012
PMID: 22170630
Neurogenesis in the adult human hippocampus.
Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH., Nat. Med. 4(11), 1998
PMID: 9809557
[Contamination of bovine fetal serum with bovine viral diarrhea virus]
Zabal O, Kobrak AL, Lager IA, Schudel AA, Weber EL., Rev. Argent. Microbiol. 32(1), 2000
PMID: 10785940

AUTHOR UNKNOWN, 2013
Large-scale generation of natural killer lymphocytes for clinical application.
Luhm J, Brand JM, Koritke P, Hoppner M, Kirchner H, Frohn C., J. Hematother. Stem Cell Res. 11(4), 2002
PMID: 12201953

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24629140
PubMed | Europe PMC

Suchen in

Google Scholar