Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids

Heider S, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T (2014)
Applied Microbiology and Biotechnology 98: 4355-4368.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Heider S, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology. 2014;98:4355-4368.
Heider, S., Peters-Wendisch, P., Wendisch, V. F., Beekwilder, J., & Brautaset, T. (2014). Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology, 98, 4355-4368.
Heider, S., Peters-Wendisch, P., Wendisch, V. F., Beekwilder, J., and Brautaset, T. (2014). Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology 98, 4355-4368.
Heider, S., et al., 2014. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology, 98, p 4355-4368.
S. Heider, et al., “Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids”, Applied Microbiology and Biotechnology, vol. 98, 2014, pp. 4355-4368.
Heider, S., Peters-Wendisch, P., Wendisch, V.F., Beekwilder, J., Brautaset, T.: Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology and Biotechnology. 98, 4355-4368 (2014).
Heider, Sabine, Peters-Wendisch, Petra, Wendisch, Volker F., Beekwilder, Jules, and Brautaset, Trygve. “Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids”. Applied Microbiology and Biotechnology 98 (2014): 4355-4368.
This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

Metabolic engineering of Bacillus subtilis for terpenoid production.
Guan Z, Xue D, Abdallah II, Dijkshoorn L, Setroikromo R, Lv G, Quax WJ., Appl. Microbiol. Biotechnol. 99(22), 2015
PMID: 26373726
CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae.
Ronda C, Maury J, Jakociunas T, Jacobsen SA, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT., Microb. Cell Fact. 14(), 2015
PMID: 26148499
Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF., Front Bioeng Biotechnol 2(), 2014
PMID: 25191655
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J. 281(21), 2014
PMID: 25181035
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970

113 References

Data provided by Europe PubMed Central.

Diversifying carotenoid biosynthetic pathways by directed evolution.
Umeno D, Tobias AV, Arnold FH., Microbiol. Mol. Biol. Rev. 69(1), 2005
PMID: 15755953

A, Biofactors 10(2–3), 1999
High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous.
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ., Appl. Environ. Microbiol. 73(13), 2007
PMID: 17496128
Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response.
Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ., Yeast 27(12), 2010
PMID: 20632327
Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.
Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ., Proc. Natl. Acad. Sci. U.S.A. 109(3), 2012
PMID: 22247290

AUTHOR UNKNOWN, 0
Carotenoid production in Bacillus subtilis achieved by metabolic engineering.
Yoshida K, Ueda S, Maeda I., Biotechnol. Lett. 31(11), 2009
PMID: 19618272

E, J Exp Bot 49(), 1998
Engineering central metabolic modules of Escherichia coli for improving β-carotene production.
Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y., Metab. Eng. 17(), 2013
PMID: 23500001
Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation.
Zhou K, Zou R, Zhang C, Stephanopoulos G, Too HP., Biotechnol. Bioeng. 110(9), 2013
PMID: 23483530

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24687754
PubMed | Europe PMC

Search this title in

Google Scholar