High-throughput sequencing reveals inbreeding depression in a natural population

Hoffman J, Simpson F, Patrice D, Rijks J, Kuiken T, Thorne M, Lacy R, Dasmahapatra K (2014)
Proceedings of the National Academy of Sciences of the United States of America 111(10): 3775-3780.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
Proxy measures of genome-wide heterozygosity based on approximately 10 microsatellites have been used to uncover heterozygosity fitness correlations (HFCs) for a wealth of important fitness traits in natural populations. However, effect sizes are typically very small and the underlying mechanisms remain contentious, as a handful of markers usually provides little power to detect inbreeding. We therefore used restriction site associated DNA (RAD) sequencing to accurately estimate genome-wide heterozygosity, an approach transferrable to any organism. As a proof of concept, we first RAD sequenced oldfield mice (Peromyscus polionotus) from a known pedigree, finding strong concordance between the inbreeding coefficient and heterozygosity measured at 13,198 single-nucleotide polymorphisms (SNPs). When applied to a natural population of harbor seals (Phoca vitulina), a weak HFC for parasite infection based on 27 microsatellites strengthened considerably with 14,585 SNPs, the deviance explained by heterozygosity increasing almost fivefold to a remarkable 49%. These findings arguably provide the strongest evidence to date of an HFC being due to inbreeding depression in a natural population lacking a pedigree. They also suggest that under some circumstances heterozygosity may explain far more variation in fitness than previously envisaged.
Erscheinungsjahr
Zeitschriftentitel
Proceedings of the National Academy of Sciences of the United States of America
Band
111
Zeitschriftennummer
10
Seite
3775-3780
ISSN
eISSN
PUB-ID

Zitieren

Hoffman J, Simpson F, Patrice D, et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(10):3775-3780.
Hoffman, J., Simpson, F., Patrice, D., Rijks, J., Kuiken, T., Thorne, M., Lacy, R., et al. (2014). High-throughput sequencing reveals inbreeding depression in a natural population. Proceedings of the National Academy of Sciences of the United States of America, 111(10), 3775-3780. doi:10.1073/pnas.1318945111
Hoffman, J., Simpson, F., Patrice, D., Rijks, J., Kuiken, T., Thorne, M., Lacy, R., and Dasmahapatra, K. (2014). High-throughput sequencing reveals inbreeding depression in a natural population. Proceedings of the National Academy of Sciences of the United States of America 111, 3775-3780.
Hoffman, J., et al., 2014. High-throughput sequencing reveals inbreeding depression in a natural population. Proceedings of the National Academy of Sciences of the United States of America, 111(10), p 3775-3780.
J. Hoffman, et al., “High-throughput sequencing reveals inbreeding depression in a natural population”, Proceedings of the National Academy of Sciences of the United States of America, vol. 111, 2014, pp. 3775-3780.
Hoffman, J., Simpson, F., Patrice, D., Rijks, J., Kuiken, T., Thorne, M., Lacy, R., Dasmahapatra, K.: High-throughput sequencing reveals inbreeding depression in a natural population. Proceedings of the National Academy of Sciences of the United States of America. 111, 3775-3780 (2014).
Hoffman, Joseph, Simpson, Fraser, Patrice, David, Rijks, Jolianne, Kuiken, Thijs, Thorne, Michael, Lacy, Robert, and Dasmahapatra, Kanchon. “High-throughput sequencing reveals inbreeding depression in a natural population”. Proceedings of the National Academy of Sciences of the United States of America 111.10 (2014): 3775-3780.

56 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Genomics and the challenging translation into conservation practice.
Shafer AB, Wolf JB, Alves PC, Bergström L, Bruford MW, Brännström I, Colling G, Dalén L, De Meester L, Ekblom R, Fawcett KD, Fior S, Hajibabaei M, Hill JA, Hoezel AR, Höglund J, Jensen EL, Krause J, Kristensen TN, Krützen M, McKay JK, Norman AJ, Ogden R, Österling EM, Ouborg NJ, Piccolo J, Popović D, Primmer CR, Reed FA, Roumet M, Salmona J, Schenekar T, Schwartz MK, Segelbacher G, Senn H, Thaulow J, Valtonen M, Veale A, Vergeer P, Vijay N, Vilà C, Weissensteiner M, Wennerström L, Wheat CW, Zieliński P., Trends Ecol Evol 30(2), 2015
PMID: 25534246
Phocine distemper virus: current knowledge and future directions.
Duignan PJ, Van Bressem MF, Baker JD, Barbieri M, Colegrove KM, De Guise S, de Swart RL, Di Guardo G, Dobson A, Duprex WP, Early G, Fauquier D, Goldstein T, Goodman SJ, Grenfell B, Groch KR, Gulland F, Hall A, Jensen BA, Lamy K, Matassa K, Mazzariol S, Morris SE, Nielsen O, Rotstein D, Rowles TK, Saliki JT, Siebert U, Waltzek T, Wellehan JF., Viruses 6(12), 2014
PMID: 25533658

44 References

Daten bereitgestellt von Europe PubMed Central.

Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation.
Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B., Mol. Ecol. 21(13), 2012
PMID: 22554318
SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it
Lachance L, Tishkoff SA., 2013
Ascertainment bias in studies of human genome-wide polymorphism.
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R., Genome Res. 15(11), 2005
PMID: 16251459

Lynn WJ., 2000
Pleistocene population expansions of Antarctic seals.
Curtis C, Stewart BS, Karl SA., Mol. Ecol. 18(10), 2009
PMID: 19344354
Mitochondrial DNA sequence data of the Cape fur seal (Arctocephalus pusillus pusillus) suggest that population numbers maybe affected by climatic shifts
Matthee CA, Fourie F, Oosthuizen WH, Meyer MA, Tolley KA., 2006
Structure and amount of genetic variation at minisatellite loci within the subspecies complex of Phoca vitulina (the harbour seal).
Kappe AL, Bijlsma R, Osterhaus AD, van Delden W, van de Zande L., Heredity (Edinb) 78 ( Pt 5)(), 1997
PMID: 9172395
Comparing molecular measures for detecting inbreeding depression
Slate J, Pemberton JM., 2002
A quantitative review of heterozygosity-fitness correlations in animal populations.
Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC., Mol. Ecol. 18(13), 2009
PMID: 19500255
Extreme natal philopatry in female Antarctic fur seals (Arctocephalus gazella)
Hoffman JI, Forcada J., 2012
Estimation of the inbreeding coefficient through use of genomic data.
Leutenegger AL, Prum B, Genin E, Verny C, Lemainque A, Clerget-Darpoux F, Thompson EA., Am. J. Hum. Genet. 73(3), 2003
PMID: 12900793
Variation in actual relationship as a consequence of Mendelian sampling and linkage
Hill WG, Weir BS., 2011
Measuring inbreeding depression in the wild: the old ways are the best.
Pemberton J., Trends Ecol. Evol. (Amst.) 19(12), 2004
PMID: 16701322
Stacks: building and genotyping Loci de novo from short-read sequences.
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH., G3 (Bethesda) 1(3), 2011
PMID: 22384329
Fast and accurate short read alignment with Burrows-Wheeler transform.
Li H, Durbin R., Bioinformatics 25(14), 2009
PMID: 19451168
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA., Genome Res. 20(9), 2010
PMID: 20644199
Rhh: An R extension for estimating multilocus heterozygosity and heterozygosity-heterozygosity correlation
Alho J, Valimaki K, Merila J., 2010
R: A language for data analysis and graphics
Ihaka R, Gentleman R., 1996

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24586051
PubMed | Europe PMC

Suchen in

Google Scholar