Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment

Skowronski W, Ogrodnik P, Wrona J, Stobiecki T, Swirkowicz R, Barnas J, Reiss G, van Dijken S (2013)
Journal of Applied Physics 114(23).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
We report on magnetic switching and backhopping effects due to spin-transfer-torque in magnetic tunnel junctions. Experimental data on current-induced switching in junctions with a MgO tunnel barrier reveal random back-and-forth switching between magnetization states, which appears when the current direction favors the parallel magnetic configuration. The effect depends on the barrier thickness t(b) and is not observed in tunnel junctions with very thin MgO tunnel barriers, t(b) < 0.95 nm. The switching dependence on bias voltage and barrier thickness is explained in terms of the macrospin model, with the magnetization dynamics described by the modified Landau-Lifshitz-Gilbert equation. Numerical simulations indicate that the competition between in-plane and out-of-plane torque components can result in a non-deterministic switching behavior at high bias voltages, in agreement with experimental observations. When the barrier thickness is reduced, the overall coupling between the magnetic layers across the barrier becomes ferromagnetic, which suppresses the backhopping effect. (C) 2013 AIP Publishing LLC.
Publishing Year
ISSN
PUB-ID

Cite this

Skowronski W, Ogrodnik P, Wrona J, et al. Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment. Journal of Applied Physics. 2013;114(23).
Skowronski, W., Ogrodnik, P., Wrona, J., Stobiecki, T., Swirkowicz, R., Barnas, J., Reiss, G., et al. (2013). Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment. Journal of Applied Physics, 114(23).
Skowronski, W., Ogrodnik, P., Wrona, J., Stobiecki, T., Swirkowicz, R., Barnas, J., Reiss, G., and van Dijken, S. (2013). Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment. Journal of Applied Physics 114.
Skowronski, W., et al., 2013. Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment. Journal of Applied Physics, 114(23).
W. Skowronski, et al., “Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment”, Journal of Applied Physics, vol. 114, 2013.
Skowronski, W., Ogrodnik, P., Wrona, J., Stobiecki, T., Swirkowicz, R., Barnas, J., Reiss, G., van Dijken, S.: Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment. Journal of Applied Physics. 114, (2013).
Skowronski, Witold, Ogrodnik, Piotr, Wrona, Jerzy, Stobiecki, Tomasz, Swirkowicz, Renata, Barnas, Jozef, Reiss, Günter, and van Dijken, Sebastiaan. “Backhopping effect in magnetic tunnel junctions: Comparison between theory and experiment”. Journal of Applied Physics 114.23 (2013).
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

arXiv 1305.2711

Search this title in

Google Scholar