Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

Adler G, Koop T, Haspel C, Taraniuk I, Moise T, Koren I, Heiblum RH, Rudich Y (2013)
Proceedings of the National Academy of Sciences 110(51): 20414-20419.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.
Erscheinungsjahr
Zeitschriftentitel
Proceedings of the National Academy of Sciences
Band
110
Zeitschriftennummer
51
Seite
20414-20419
ISSN
eISSN
PUB-ID

Zitieren

Adler G, Koop T, Haspel C, et al. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proceedings of the National Academy of Sciences. 2013;110(51):20414-20419.
Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., Heiblum, R. H., et al. (2013). Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proceedings of the National Academy of Sciences, 110(51), 20414-20419. doi:10.1073/pnas.1317209110
Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., Heiblum, R. H., and Rudich, Y. (2013). Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proceedings of the National Academy of Sciences 110, 20414-20419.
Adler, G., et al., 2013. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proceedings of the National Academy of Sciences, 110(51), p 20414-20419.
G. Adler, et al., “Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds”, Proceedings of the National Academy of Sciences, vol. 110, 2013, pp. 20414-20419.
Adler, G., Koop, T., Haspel, C., Taraniuk, I., Moise, T., Koren, I., Heiblum, R.H., Rudich, Y.: Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. Proceedings of the National Academy of Sciences. 110, 20414-20419 (2013).
Adler, Gabriela, Koop, Thomas, Haspel, Carynelisa, Taraniuk, Ilya, Moise, Tamar, Koren, Ilan, Heiblum, Reuven H., and Rudich, Yinon. “Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds”. Proceedings of the National Academy of Sciences 110.51 (2013): 20414-20419.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Observing the formation of ice and organic crystals in active sites.
Campbell JM, Meldrum FC, Christenson HK., Proc Natl Acad Sci U S A 114(5), 2017
PMID: 27994140
Crystals creeping out of cracks.
Koop T., Proc Natl Acad Sci U S A 114(5), 2017
PMID: 28104819
Water diffusion in atmospherically relevant α-pinene secondary organic material.
Price HC, Mattsson J, Zhang Y, Bertram AK, Davies JF, Grayson JW, Martin ST, O'Sullivan D, Reid JP, Rickards AMJ, Murray BJ., Chem Sci 6(8), 2015
PMID: 28717493
Exploring matrix effects on photochemistry of organic aerosols.
Lignell H, Hinks ML, Nizkorodov SA., Proc Natl Acad Sci U S A 111(38), 2014
PMID: 25201953

53 References

Daten bereitgestellt von Europe PubMed Central.

Atmospheric aerosols: composition, transformation, climate and health effects.
Poschl U., Angew. Chem. Int. Ed. Engl. 44(46), 2005
PMID: 16302183
Phase Transitions of Aqueous Atmospheric Particles.
Martin ST., Chem. Rev. 100(9), 2000
PMID: 11777428
Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations
Mikhailov E, Vlasenko S, Martin ST, Koop T, Poschl U., 2009
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies
Ervens B, Turpin BJ, Weber RJ., 2011
Aqueous chemistry and its role in secondary organic aerosol (SOA) formation
Lim YB, Tan Y, Perri MJ, Seitzinger SP, Turpin BJ., 2010
Global simulations of aerosol processing in clouds
Hoose C, Lohmann U, Bennartz R, Croft B, Lesins G., 2008
Cloud-radiative forcing and climate: results from the Earth radiation budget experiment.
Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR, Ahmad E, Hartmann D., Science 243(4887), 1989
PMID: 17780422
Maintenance of tropical tropopause layer cirrus
Dinh TP, Durran DR, Ackerman TP., 2010
In situ, airborne instrumentation. Addressing and solving measurement problems in ice clouds
Baumgardner D., 2012
The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia
Protat A., 2011
Tropical anvil characteristics and water vapor of the tropical tropopause layer: Impact of heterogeneous and homogeneous freezing parameterizations
Fan JW., 2010
Impact of radiative heating, wind shear, temperature variability, and microphysical processes on the structure and evolution of thin cirrus in the tropical tropopause layer
Jensen EJ, Pfister L, Toon OB., 2011
Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study
Kuang ZM, Bretherton CS., 2004
Aerosol composition of the tropical upper troposphere
Froyd KD., 2009
Observations of organic species and atmospheric ice formation
Cziczo DJ., 2004
Do atmospheric aerosols form glasses?
Zobrist B, Marcolli C, Pedernera DA, Koop T., 2008
Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures
Wilson TW., 2012
Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions
Murray BJ., 2010
The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation
Wang B., 2012
Measurements of the timescales for the mass transfer of water in glassy aerosol at low relative humidity and ambient temperature
Tong HJ, Reid JP, Bones DL, Luo BP, Krieger UK., 2011
Phase of atmospheric secondary organic material affects its reactivity.
Kuwata M, Martin ST., Proc. Natl. Acad. Sci. U.S.A. 109(43), 2012
PMID: 23045632
State transformations and ice nucleation in amorphous (semi-)solid organic aerosol
Baustian KJ., 2013
Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus
Jensen EJ, Pfister L, Bui TP, Lawson P, Baumgardner D., 2010
Atmospheric HULIS: How humic-like are they? A comprehensive and critical review
Graber ER, Rudich Y., 2006
Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory
DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL., 2004
Engineering pharmaceutical stability with amorphous solids
Roberts CJ, Debenedetti PG., 2002
Hygroscopic growth and activation of HULIS particles: Experimental data and a new iterative parameterization scheme for complex aerosol particles
Ziese M., 2008
Controlled freezing and freeze drying: A versatile route for porous and micro-/nano-structured materials
Qian L, Zhang HF., 2011
Freeze drying of pharmaceutical excipients close to collapse temperature: Influence of the process conditions on process time and product quality
Barresi A, Ghio S, Fissore D, Pisano R., 2009
Collapse, a structural transition in freeze-dried carbohydrates. 3. Prerequisite of recrystallization
To EC, Flink JM., 1978
Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability
Wagner R., 2012
The MODIS cloud products: Algorithms and examples from Terra
Platnick S., 2003
Convective cloud downdraft structure: An interpretive survey
Knupp KR, Cotton WR., 1985
Entrainment and detrainment in cumulus convection: An overview
de WC., 2013
The global distribution of ice-supersaturated regions as seen by the microwave limb sounder
Spichtinger P, Gierens K, Read W., 2003
Ice supersaturation in the ECMWF integrated forecast system
Tompkins AM, Gierens K, Radel G., 2007
Exploring the vertical profile of atmospheric organic aerosol: Comparing 17 aircraft field campaigns with a global model
Heald CL., 2011
In-situ observations of mid-latitude forest fire plumes deep in the stratosphere
Jost HJ., 2004
Clarifying the dominant sources and mechanisms of cirrus cloud formation.
Cziczo DJ, Froyd KD, Hoose C, Jensen EJ, Diao M, Zondlo MA, Smith JB, Twohy CH, Murphy DM., Science 340(6138), 2013
PMID: 23661645
Measurements of the concentration and composition of nuclei for cirrus formation.
DeMott PJ, Cziczo DJ, Prenni AJ, Murphy DM, Kreidenweis SM, Thomson DS, Borys R, Rogers DC., Proc. Natl. Acad. Sci. U.S.A. 100(25), 2003
PMID: 14657330
Aerosols that form subvisible cirrus at the tropical tropopause
Froyd KD, Murphy DM, Lawson P, Baumgardner D, Herman RL., 2010
Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities
Marcolli C., 2013
Two-step crystal nucleation via capillary condensation
Christenson HK., 2013

AUTHOR UNKNOWN, 0
The nucleus in and the growth of hygroscopic droplets
Kohler H., 1936
Extinction efficiencies of coated absorbing aerosols measured by cavity ring down aerosol spectrometry
Riziq AA, Trainic M, Erlick C, Segre E, Rudich Y., 2008
On the twilight zone between clouds and aerosols
Koren I, Remer LA, Kaufman YJ, Rudich Y, Martins JV., 2007
Turbulent effects on the microphysics and initiation of warm rain in deep convective clouds: 2-D simulations by a spectral mixed-phase microphysics cloud model
Benmoshe N, Pinsky M, Pokrovsky A, Khain A., 2012
Alternative pathway for atmospheric particles growth.
Monge ME, Rosenorn T, Favez O, Muller M, Adler G, Abo Riziq A, Rudich Y, Herrmann H, George C, D'Anna B., Proc. Natl. Acad. Sci. U.S.A. 109(18), 2012
PMID: 22517749

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24297908
PubMed | Europe PMC

Suchen in

Google Scholar