Algal photoreceptors: in vivo functions and potential applications

Kianianmomeni A, Hallmann A (2014)
Planta 239(1): 1-26.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems.


Kianianmomeni A, Hallmann A. Algal photoreceptors: in vivo functions and potential applications. Planta. 2014;239(1):1-26.
Kianianmomeni, A., & Hallmann, A. (2014). Algal photoreceptors: in vivo functions and potential applications. Planta, 239(1), 1-26. doi:10.1007/s00425-013-1962-5
Kianianmomeni, A., and Hallmann, A. (2014). Algal photoreceptors: in vivo functions and potential applications. Planta 239, 1-26.
Kianianmomeni, A., & Hallmann, A., 2014. Algal photoreceptors: in vivo functions and potential applications. Planta, 239(1), p 1-26.
A. Kianianmomeni and A. Hallmann, “Algal photoreceptors: in vivo functions and potential applications”, Planta, vol. 239, 2014, pp. 1-26.
Kianianmomeni, A., Hallmann, A.: Algal photoreceptors: in vivo functions and potential applications. Planta. 239, 1-26 (2014).
Kianianmomeni, Arash, and Hallmann, Armin. “Algal photoreceptors: in vivo functions and potential applications”. Planta 239.1 (2014): 1-26.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.
Govorunova EG, Sineshchekov OA, Li H, Spudich JL., Annu Rev Biochem 86(), 2017
PMID: 28301742
CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas.
Kinoshita A, Niwa Y, Onai K, Yamano T, Fukuzawa H, Ishiura M, Matsuo T., PLoS Genet 13(3), 2017
PMID: 28333924
Evolution of photoperiod sensing in plants and algae.
Serrano-Bueno G, Romero-Campero FJ, Lucas-Reina E, Romero JM, Valverde F., Curr Opin Plant Biol 37(), 2017
PMID: 28391047
Ubiquitous distribution of helmchrome in phototactic swarmers of the stramenopiles.
Fu G, Nagasato C, Yamagishi T, Kawai H, Okuda K, Takao Y, Horiguchi T, Motomura T., Protoplasma 253(3), 2016
PMID: 26202473
Functional characterization of Ostreococcus tauri phototropin.
Sullivan S, Petersen J, Blackwood L, Papanatsiou M, Christie JM., New Phytol 209(2), 2016
PMID: 26414490
Diverse photoreceptors and light responses in plants.
Kong SG, Okajima K., J Plant Res 129(2), 2016
PMID: 26860414
Photosynthetic acclimation, vernalization, crop productivity and 'the grand design of photosynthesis'.
Hüner NPA, Dahal K, Bode R, Kurepin LV, Ivanov AG., J Plant Physiol 203(), 2016
PMID: 27185597
On reproduction in red algae: further research needed at the molecular level.
García-Jiménez P, Robaina RR., Front Plant Sci 6(), 2015
PMID: 25755663
Genetic tools and techniques for Chlamydomonas reinhardtii.
Mussgnug JH., Appl Microbiol Biotechnol 99(13), 2015
PMID: 26025017
Transcriptomics analyses of soybean leaf and root samples during water-deficit.
Tripathi P, Rabara RC, Shen QJ, Rushton PJ., Genom Data 5(), 2015
PMID: 26484247
Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea.
Yang Y, Sun X, Yang S, Li X, Yang Y., Biochem Biophys Res Commun 448(2), 2014
PMID: 24755076
More light behind gene expression.
Kianianmomeni A., Trends Plant Sci 19(8), 2014
PMID: 24928178
Light emitting diodes (LEDs) applied to microalgal production.
Schulze PS, Barreira LA, Pereira HG, Perales JA, Varela JC., Trends Biotechnol 32(8), 2014
PMID: 25012573

254 References

Daten bereitgestellt von Europe PubMed Central.

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K., Nat. Neurosci. 11(6), 2008
PMID: 18432196
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.
Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K., Nat Protoc 5(3), 2010
PMID: 20203662
The microbial opsin family of optogenetic tools.
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K., Cell 147(7), 2011
PMID: 22196724
Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.
Zorin B, Lu Y, Sizova I, Hegemann P., Gene 432(1-2), 2009
PMID: 19121376


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 24081482
PubMed | Europe PMC

Suchen in

Google Scholar