Algal photoreceptors: in vivo functions and potential applications

Kianianmomeni A, Hallmann A (2014)
Planta 239(1): 1-26.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kianianmomeni A, Hallmann A. Algal photoreceptors: in vivo functions and potential applications. Planta. 2014;239(1):1-26.
Kianianmomeni, A., & Hallmann, A. (2014). Algal photoreceptors: in vivo functions and potential applications. Planta, 239(1), 1-26.
Kianianmomeni, A., and Hallmann, A. (2014). Algal photoreceptors: in vivo functions and potential applications. Planta 239, 1-26.
Kianianmomeni, A., & Hallmann, A., 2014. Algal photoreceptors: in vivo functions and potential applications. Planta, 239(1), p 1-26.
A. Kianianmomeni and A. Hallmann, “Algal photoreceptors: in vivo functions and potential applications”, Planta, vol. 239, 2014, pp. 1-26.
Kianianmomeni, A., Hallmann, A.: Algal photoreceptors: in vivo functions and potential applications. Planta. 239, 1-26 (2014).
Kianianmomeni, Arash, and Hallmann, Armin. “Algal photoreceptors: in vivo functions and potential applications”. Planta 239.1 (2014): 1-26.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

Transcriptomics analyses of soybean leaf and root samples during water-deficit.
Tripathi P, Rabara RC, Shen QJ, Rushton PJ., Genom Data 5(), 2015
PMID: 26484247
Genetic tools and techniques for Chlamydomonas reinhardtii.
Mussgnug JH., Appl. Microbiol. Biotechnol. 99(13), 2015
PMID: 26025017
On reproduction in red algae: further research needed at the molecular level.
Garcia-Jimenez P, Robaina RR., Front Plant Sci 6(), 2015
PMID: 25755663
Light emitting diodes (LEDs) applied to microalgal production.
Schulze PS, Barreira LA, Pereira HG, Perales JA, Varela JC., Trends Biotechnol. 32(8), 2014
PMID: 25012573
More light behind gene expression.
Kianianmomeni A., Trends Plant Sci. 19(8), 2014
PMID: 24928178
Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea.
Yang Y, Sun X, Yang S, Li X, Yang Y., Biochem. Biophys. Res. Commun. 448(2), 2014
PMID: 24755076

254 References

Data provided by Europe PubMed Central.

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K., Nat. Neurosci. 11(6), 2008
PMID: 18432196
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.
Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K., Nat Protoc 5(3), 2010
PMID: 20203662
The microbial opsin family of optogenetic tools.
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K., Cell 147(7), 2011
PMID: 22196724
Nuclear gene targeting in Chlamydomonas as exemplified by disruption of the PHOT gene.
Zorin B, Lu Y, Sizova I, Hegemann P., Gene 432(1-2), 2009
PMID: 19121376

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24081482
PubMed | Europe PMC

Search this title in

Google Scholar