Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges

Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, Woyke T, Hentschel U (2013)
The ISME journal 7(12): 2287-2300.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kamke J, Sczyrba A, Ivanova N, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME journal. 2013;7(12):2287-2300.
Kamke, J., Sczyrba, A., Ivanova, N., Schwientek, P., Rinke, C., Mavromatis, K., Woyke, T., et al. (2013). Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME journal, 7(12), 2287-2300.
Kamke, J., Sczyrba, A., Ivanova, N., Schwientek, P., Rinke, C., Mavromatis, K., Woyke, T., and Hentschel, U. (2013). Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME journal 7, 2287-2300.
Kamke, J., et al., 2013. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME journal, 7(12), p 2287-2300.
J. Kamke, et al., “Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges”, The ISME journal, vol. 7, 2013, pp. 2287-2300.
Kamke, J., Sczyrba, A., Ivanova, N., Schwientek, P., Rinke, C., Mavromatis, K., Woyke, T., Hentschel, U.: Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. The ISME journal. 7, 2287-2300 (2013).
Kamke, Janine, Sczyrba, Alexander, Ivanova, Natalia, Schwientek, Patrick, Rinke, Christian, Mavromatis, Kostas, Woyke, Tanja, and Hentschel, Ute. “Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges”. The ISME journal 7.12 (2013): 2287-2300.
This data publication is cited in the following publications:
This publication cites the following data publications:

15 Citations in Europe PMC

Data provided by Europe PubMed Central.

In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3).
Youssef NH, Farag IF, Rinke C, Hallam SJ, Woyke T, Elshahed MS., PLoS ONE 10(6), 2015
PMID: 26039074
VirSorter: mining viral signal from microbial genomic data.
Roux S, Enault F, Hurwitz BL, Sullivan MB., PeerJ 3(), 2015
PMID: 26038737
Lifestyle evolution in cyanobacterial symbionts of sponges.
Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, Gilbert JA, Hentschel U, Steindler L., MBio 6(3), 2015
PMID: 26037118
Genomic insights into the uncultivated marine Zetaproteobacteria at Loihi Seamount.
Field EK, Sczyrba A, Lyman AE, Harris CC, Woyke T, Stepanauskas R, Emerson D., ISME J 9(4), 2015
PMID: 25303714
Effects of sample handling and cultivation bias on the specificity of bacterial communities in keratose marine sponges.
Hardoim CC, Cardinale M, Cucio AC, Esteves AI, Berg G, Xavier JR, Cox CJ, Costa R., Front Microbiol 5(), 2014
PMID: 25477868
Polyketide synthases in the microbiome of the marine sponge Plakortis halichondrioides: a metagenomic update.
Della Sala G, Hochmuth T, Teta R, Costantino V, Mangoni A., Mar Drugs 12(11), 2014
PMID: 25405856
The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis.
Dmytrenko O, Russell SL, Loo WT, Fontanez KM, Liao L, Roeselers G, Sharma R, Stewart FJ, Newton IL, Woyke T, Wu D, Lang JM, Eisen JA, Cavanaugh CM., BMC Genomics 15(), 2014
PMID: 25342549
Recent advances in genomic DNA sequencing of microbial species from single cells.
Lasken RS, McLean JS., Nat. Rev. Genet. 15(9), 2014
PMID: 25091868
Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics.
Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U., Environ. Microbiol. 16(12), 2014
PMID: 24920529
Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues.
Gao ZM, Wang Y, Lee OO, Tian RM, Wong YH, Bougouffa S, Batang Z, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY., Microb. Ecol. 68(3), 2014
PMID: 24760170
The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.
Kamke J, Rinke C, Schwientek P, Mavromatis K, Ivanova N, Sczyrba A, Woyke T, Hentschel U., PLoS ONE 9(1), 2014
PMID: 24498082

91 References

Data provided by Europe PubMed Central.

Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.
Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR., Nature 450(7169), 2007
PMID: 18033299
Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts.
Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T, Whalan S, Horn M, Wagner M., Environ. Microbiol. 12(8), 2010
PMID: 21966903
Physiology. What determines coral health?
Weis VM, Allemand D., Science 324(5931), 2009
PMID: 19478172
Symbiosis insights through metagenomic analysis of a microbial consortium.
Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N., Nature 443(7114), 2006
PMID: 16980956
Assembling the marine metagenome, one cell at a time.
Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, Cheng JF, Eisen JA, Sieracki ME, Stepanauskas R., PLoS ONE 4(4), 2009
PMID: 19390573
In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon
Yahel G, Sharp JH, Marie D, Hase C, Genin ARN., 2003
dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y., Nucleic Acids Res. 40(Web Server issue), 2012
PMID: 22645317
Single-cell genomics reveals organismal interactions in uncultivated marine protists.
Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D., Science 332(6030), 2011
PMID: 21551060
Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426.
Yoshida K, Sanbongi A, Murakami A, Suzuki H, Takenaka S, Takami H., Microbiology (Reading, Engl.) 158(Pt 8), 2012
PMID: 22609753
myo-Inositol catabolism in Bacillus subtilis.
Yoshida K, Yamaguchi M, Morinaga T, Kinehara M, Ikeuchi M, Ashida H, Fujita Y., J. Biol. Chem. 283(16), 2008
PMID: 18310071
Velvet: algorithms for de novo short read assembly using de Bruijn graphs.
Zerbino DR, Birney E., Genome Res. 18(5), 2008
PMID: 18349386
Evidence of cellulose metabolism by the giant panda gut microbiome.
Zhu L, Wu Q, Dai J, Zhang S, Wei F., Proc. Natl. Acad. Sci. U.S.A. 108(43), 2011
PMID: 22006317

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23842652
PubMed | Europe PMC

Search this title in

Google Scholar