Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization

Herrera MG, Zamarreno F, Costabel M, Ritacco H, Hütten A, Sewald N, Dodero VI (2014)
Biopolymers 101(1): 96-106.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)(3)PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 96-106, 2014.
Publishing Year
ISSN
PUB-ID

Cite this

Herrera MG, Zamarreno F, Costabel M, et al. Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization. Biopolymers. 2014;101(1):96-106.
Herrera, M. G., Zamarreno, F., Costabel, M., Ritacco, H., Hütten, A., Sewald, N., & Dodero, V. I. (2014). Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization. Biopolymers, 101(1), 96-106.
Herrera, M. G., Zamarreno, F., Costabel, M., Ritacco, H., Hütten, A., Sewald, N., and Dodero, V. I. (2014). Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization. Biopolymers 101, 96-106.
Herrera, M.G., et al., 2014. Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization. Biopolymers, 101(1), p 96-106.
M.G. Herrera, et al., “Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization”, Biopolymers, vol. 101, 2014, pp. 96-106.
Herrera, M.G., Zamarreno, F., Costabel, M., Ritacco, H., Hütten, A., Sewald, N., Dodero, V.I.: Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization. Biopolymers. 101, 96-106 (2014).
Herrera, Maria G., Zamarreno, Fernando, Costabel, Marcelo, Ritacco, Hernan, Hütten, Andreas, Sewald, Norbert, and Dodero, Veronica I. “Circular Dichroism and Electron Microscopy Studies In Vitro of 33-mer Gliadin Peptide Revealed Secondary Structure Transition and Supramolecular Organization”. Biopolymers 101.1 (2014): 96-106.
This data publication is cited in the following publications:
This publication cites the following data publications:

72 References

Data provided by Europe PubMed Central.


Israelachvili, 2011
Self-assembly of the amphipathic helix (VHLPPP)8. A mechanism for zein protein body formation.
Kogan MJ, Dalcol I, Gorostiza P, Lopez-Iglesias C, Pons M, Sanz F, Ludevid D, Giralt E., J. Mol. Biol. 312(5), 2001
PMID: 11580236
Assembly mechanism of recombinant spider silk proteins.
Rammensee S, Slotta U, Scheibel T, Bausch AR., Proc. Natl. Acad. Sci. U.S.A. 105(18), 2008
PMID: 18445655

Chang, Science 307(), 2005

Smoluchowski, Phys Chem (Frankfurt/Main) 92(), 1917

Nyrkova, Eur Phys J B 17(), 2000
Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis.
Ruan L, Zhang H, Luo H, Liu J, Tang F, Shi YK, Zhao X., Proc. Natl. Acad. Sci. U.S.A. 106(13), 2009
PMID: 19289834
Mechanistic investigation into the spontaneous linear assembly of gold nanospheres.
Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y, Chen H., Phys Chem Chem Phys 12(38), 2010
PMID: 20661507
Small globular protein motif forms particulate hydrogel under various pH conditions.
Fang J, Zhang X, Cai Y, Wei Y., Biomacromolecules 12(5), 2011
PMID: 21413697
Supramolecular non-amyloid intermediates in the early stages of α-synuclein aggregation.
Fauerbach JA, Yushchenko DA, Shahmoradian SH, Chiu W, Jovin TM, Jares-Erijman EA., Biophys. J. 102(5), 2012
PMID: 22404935
Imaging nanometer-sized α-synuclein aggregates by superresolution fluorescence localization microscopy.
Roberti MJ, Folling J, Celej MS, Bossi M, Jovin TM, Jares-Erijman EA., Biophys. J. 102(7), 2012
PMID: 22500760
The intestinal environment in health and disease - recent insights on the potential of intestinal bacteria to influence human health.
Possemiers S, Grootaert C, Vermeiren J, Gross G, Marzorati M, Verstraete W, Van de Wiele T., Curr. Pharm. Des. 15(18), 2009
PMID: 19519443
Hemopressin forms self-assembled fibrillar nanostructures under physiologically relevant conditions.
Bomar MG, Samuelsson SJ, Kibler P, Kodukula K, Galande AK., Biomacromolecules 13(3), 2012
PMID: 22304720
The structural biology of protein aggregation diseases: Fundamental questions and some answers.
Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AO, Riekel C., Acc. Chem. Res. 39(9), 2006
PMID: 16981672
Nanoparticles and the immune system.
Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA., Endocrinology 151(2), 2010
PMID: 20016026
Identification of the core structure of lysozyme amyloid fibrils by proteolysis.
Frare E, Mossuto MF, Polverino de Laureto P, Dumoulin M, Dobson CM, Fontana A., J. Mol. Biol. 361(3), 2006
PMID: 16859705

Gao, Proc Natl Acad Sci USA 27(), 2005
A self-assembling peptide acting as an immune adjuvant.
Rudra JS, Tian YF, Jung JP, Collier JH., Proc. Natl. Acad. Sci. U.S.A. 107(2), 2010
PMID: 20080728

Champion, Proc Natl Acad Sci USA 103(), 2006

Paoletti, 1997
Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins.
Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL., Proc. Natl. Acad. Sci. U.S.A. 95(11), 1998
PMID: 9600986
Structural properties and dynamic behavior of nonfibrillar oligomers formed by PrP(106-126).
Walsh P, Neudecker P, Sharpe S., J. Am. Chem. Soc. 132(22), 2010
PMID: 20465257

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23703327
PubMed | Europe PMC

Search this title in

Google Scholar