Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons

Tabuchi M, Sakurai T, Namiki S, Haupt S, Ninegshi R, Mitsuno H, Shiotsuki T, Uchino K, Sezutsu H, Tamura T, Nakatani K, et al. (2013)
Proc Natl Acad Sci U S A 110(38): 15455-15460.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Tabuchi M, Sakurai T, Namiki S, et al. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A. 2013;110(38):15455-15460.
Tabuchi, M., Sakurai, T., Namiki, S., Haupt, S., Ninegshi, R., Mitsuno, H., Shiotsuki, T., et al. (2013). Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A, 110(38), 15455-15460.
Tabuchi, M., Sakurai, T., Namiki, S., Haupt, S., Ninegshi, R., Mitsuno, H., Shiotsuki, T., Uchino, K., Sezutsu, H., Tamura, T., et al. (2013). Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A 110, 15455-15460.
Tabuchi, M., et al., 2013. Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A, 110(38), p 15455-15460.
M. Tabuchi, et al., “Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons”, Proc Natl Acad Sci U S A, vol. 110, 2013, pp. 15455-15460.
Tabuchi, M., Sakurai, T., Namiki, S., Haupt, S., Ninegshi, R., Mitsuno, H., Shiotsuki, T., Uchino, K., Sezutsu, H., Tamura, T., Nakatani, K., Kanzaki, R.: Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons. Proc Natl Acad Sci U S A. 110, 15455-15460 (2013).
Tabuchi, Masashi, Sakurai, Takeshi, Namiki, Shigehiro, Haupt, Stephan, Ninegshi, Ryo, Mitsuno, Hidefumi, Shiotsuki, Takahiro, Uchino, Keiro, Sezutsu, Hideki, Tamura, Toshiki, Nakatani, Kei, and Kanzaki, Ryohei. “Pheromone responsiveness threshold depends on temporal integration by antennal lobe projection neurons”. Proc Natl Acad Sci U S A 110.38 (2013): 15455-15460.
This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

Neurally Encoding Time for Olfactory Navigation.
Park IJ, Hein AM, Bobkov YV, Reidenbach MA, Ache BW, Principe JC., PLoS Comput. Biol. 12(1), 2016
PMID: 26730727
Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth.
Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Sezutsu H, Kanzaki R., Sci Rep 5(), 2015
PMID: 26047360
Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons.
Rospars JP, Gremiaux A, Jarriault D, Chaffiol A, Monsempes C, Deisig N, Anton S, Lucas P, Martinez D., PLoS Comput. Biol. 10(12), 2014
PMID: 25474026
Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori.
Kiya T, Morishita K, Uchino K, Iwami M, Sezutsu H., PLoS ONE 9(11), 2014
PMID: 25396742
Olfactory coding in the insect brain: data and conjectures.
Galizia CG., Eur. J. Neurosci. 39(11), 2014
PMID: 24698302

49 References

Data provided by Europe PubMed Central.

Measurement of odor-plume structure in a wind tunnel using a photoionization detector and a tracer gas
Justus KA., 2002
A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori.
Sakurai T, Mitsuno H, Haupt SS, Uchino K, Yokohari F, Nishioka T, Kobayashi I, Sezutsu H, Tamura T, Kanzaki R., PLoS Genet. 7(6), 2011
PMID: 21738481
Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking
Kanzaki R., 1992
Pheromone-triggered ‘flipflopping’ neural signals correlate with activities of neck motor neurons of a male moth, Bombyx mori
Kanzaki R, Mishima T., 1996
GABAergic mechanisms that shape the temporal response to odors in moth olfactory projection neurons.
Christensen TA, Waldrop BR, Hildebrand JG., Ann. N. Y. Acad. Sci. 855(), 1998
PMID: 9929641
Cellular mechanisms of temporal sensitivity in visual cortex neurons.
Cardin JA, Kumbhani RD, Contreras D, Palmer LA., J. Neurosci. 30(10), 2010
PMID: 20219999
GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth, Manduca sexta
Waldrop B, Christensen TA, Hildebrand JG., 1987
A presynaptic gain control mechanism fine-tunes olfactory behavior.
Root CM, Masuyama K, Green DS, Enell LE, Nassel DR, Lee CH, Wang JW., Neuron 59(2), 2008
PMID: 18667158
Odour-plume dynamics influence the brain's olfactory code.
Vickers NJ, Christensen TA, Baker TC, Hildebrand JG., Nature 410(6827), 2001
PMID: 11260713
Neural encoding of rapidly fluctuating odors.
Geffen MN, Broome BM, Laurent G, Meister M., Neuron 61(4), 2009
PMID: 19249277
Multimodal fast optical interrogation of neural circuitry.
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K., Nature 446(7136), 2007
PMID: 17410168
Rescue of white egg 1 mutant by introduction of the wild-type Bombyx kynurenine 3–monooxygenase gene
Quan G., 2007
Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector.
Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P, Toshiki T, Chantal T, Corinne R, Toshio K, Eappen A, Mari K, Natuo K, Jean-Luc T, Bernard M, Gerard C, Paul S, Malcolm F, Jean-Claude P, Pierre C., Nat. Biotechnol. 18(1), 2000
PMID: 10625397

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24006366
PubMed | Europe PMC

Search this title in

Google Scholar