Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates

Wodraszka R, Manthe U (2013)
The Journal Of Physical Chemistry A 117(32): 7246-7255.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
A scheme to efficiently calculate ro-vibrational (J > 0) eigenstates within the framework of the multiconfigurational time-dependent Hartree (MCTDH) approach is introduced. It employs a basis of MCTDH wave packets which is generated in the calculation of vibrational (J = 0) eigenstates via existing MCTDH-based iterative diagonalization approaches. The subsequent ro-vibrational calculations for total angular momenta J > 0 use direct products of these wave packets and the Wigner rotation matrices. In this ro-vibrational basis, the Hamiltonian matrix can be computed and diagonalized with minor numerical effort for any value of J. Accurate ro-vibrational states are obtained if the number of iterations in the J = 0 calculations and the basis set sizes in the MCTDH wave function representation are converged. Test calculations studying CH2D show that ro-vibrational eigenstates for moderately large J can be converged within wavenumber accuracy with the same MCTDH basis sets and only slightly increased iteration counts compared to purely vibrational (J = 0) calculations. If large J's are considered or very high accuracies are required, the number of iterations required to obtain convergence increases significantly. Comparing the theoretical results with experimental data for the out-of-plane bend, symmetric stretch, and antisymmetric stretch fundamentals, the accuracy of the ab initio potential energy surface employed is investigated.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Wodraszka R, Manthe U. Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. The Journal Of Physical Chemistry A. 2013;117(32):7246-7255.
Wodraszka, R., & Manthe, U. (2013). Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. The Journal Of Physical Chemistry A, 117(32), 7246-7255.
Wodraszka, R., and Manthe, U. (2013). Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. The Journal Of Physical Chemistry A 117, 7246-7255.
Wodraszka, R., & Manthe, U., 2013. Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. The Journal Of Physical Chemistry A, 117(32), p 7246-7255.
R. Wodraszka and U. Manthe, “Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates”, The Journal Of Physical Chemistry A, vol. 117, 2013, pp. 7246-7255.
Wodraszka, R., Manthe, U.: Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. The Journal Of Physical Chemistry A. 117, 7246-7255 (2013).
Wodraszka, Robert, and Manthe, Uwe. “Iterative Diagonalization in the Multiconfigurational Time-Dependent Hartree Approach: Ro-vibrational Eigenstates”. The Journal Of Physical Chemistry A 117.32 (2013): 7246-7255.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23565665
PubMed | Europe PMC

Search this title in

Google Scholar