Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1

Niemann H (2013)
Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics 1834(10): 2195-2204.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The structural basis of ligand-induced dimerization of the receptor tyrosine kinase MET by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is not well understood. However, interesting insight into the molecular mechanism of MET dimerization has emerged from crystal structures of MET in complex with a bacterial agonist, the invasion protein internalin B (InlB) from pathogenic Listeria monocytogenes. MET activation by InlB promotes uptake of bacteria into host cells. Structural and biophysical data suggest that InlB is monomeric on its own but dimerizes upon binding to the membrane-anchored MET receptor promoting the formation of a signaling active 2:2 complex. The dimerization interface is small and unusually located on the convex side of the curved InlB leucine-rich repeat (LRR) domain. As InlB does not dimerize in solution, the dimerization site could only be identified by studying packing contacts of InlB in various crystal forms and had to be proven by scrutinizing its biological relevance in cellular assays. InlB dimerization is thus an example of a low-affinity contact that appears irrelevant in solution but becomes physiologically significant in the context of 2-dimensional diffusion restricted to the membrane plane. The resulting 2:2 InlB: MET complex has an InlB dimer at its center with one MET molecule bound peripherally to each InlB. This model of ligand-mediated MET dimerization may serve as a blue-print to understand MET activation by NK1, a naturally occurring HGF/SF splice variant and MET agonist. Crystal structures of NK1 repeatedly show a NK1 dimer, in which residues implicated in MET-binding are located on the outside. Thus, MET dimerization by NK1 may also be ligand-mediated with a NK1 dimer at the center of the 2:2 complex with one MET molecule bound peripherally to each NK1. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases. (C) 2012 Elsevier B.V. All rights reserved.
Stichworte
Erscheinungsjahr
Zeitschriftentitel
Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics
Band
1834
Zeitschriftennummer
10
Seite
2195-2204
ISSN
PUB-ID

Zitieren

Niemann H. Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics. 2013;1834(10):2195-2204.
Niemann, H. (2013). Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics, 1834(10), 2195-2204. doi:10.1016/j.bbapap.2012.10.012
Niemann, H. (2013). Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics 1834, 2195-2204.
Niemann, H., 2013. Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics, 1834(10), p 2195-2204.
H. Niemann, “Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1”, Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics, vol. 1834, 2013, pp. 2195-2204.
Niemann, H.: Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics. 1834, 2195-2204 (2013).
Niemann, Hartmut. “Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1”. Biochimica Et Biophysica Acta (Bba) - Proteins & Proteomics 1834.10 (2013): 2195-2204.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Exome sequencing deciphers a germline MET mutation in familial epidermal growth factor receptor-mutant lung cancer.
Tode N, Kikuchi T, Sakakibara T, Hirano T, Inoue A, Ohkouchi S, Tamada T, Okazaki T, Koarai A, Sugiura H, Niihori T, Aoki Y, Nakayama K, Matsumoto K, Matsubara Y, Yamamoto M, Watanabe A, Nukiwa T, Ichinose M., Cancer Sci 108(6), 2017
PMID: 28294470
To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection.
Eisenreich W, Rudel T, Heesemann J, Goebel W., Front Cell Infect Microbiol 7(), 2017
PMID: 28752080
Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide.
Gambin Y, Polinkovsky M, Francois B, Giles N, Bhumkar A, Sierecki E., Int J Mol Sci 17(5), 2016
PMID: 27144560
MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB.
Bleymüller WM, Lämmermann N, Ebbes M, Maynard D, Geerds C, Niemann HH., J Biol Chem 291(49), 2016
PMID: 27789707
Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors.
Blaszczyk M, Harmer NJ, Chirgadze DY, Ascher DB, Blundell TL., Prog Biophys Mol Biol 118(3), 2015
PMID: 25957048
HGF/Met Axis in Heart Function and Cardioprotection.
Gallo S, Sala V, Gatti S, Crepaldi T., Biomedicines 2(4), 2014
PMID: 28548070

100 References

Daten bereitgestellt von Europe PubMed Central.

Scatter factors and invasive growth.
Comoglio PM, Boccaccio C., Semin. Cancer Biol. 11(2), 2001
PMID: 11322834
The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade.
Li C, Hisamoto N, Nix P, Kanao S, Mizuno T, Bastiani M, Matsumoto K., Nat. Neurosci. 15(4), 2012
PMID: 22388962
Met, metastasis, motility and more.
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF., Nat. Rev. Mol. Cell Biol. 4(12), 2003
PMID: 14685170
MET signalling: principles and functions in development, organ regeneration and cancer.
Trusolino L, Bertotti A, Comoglio PM., Nat. Rev. Mol. Cell Biol. 11(12), 2010
PMID: 21102609
Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase.
Birchmeier C, Gherardi E., Trends Cell Biol. 8(10), 1998
PMID: 9789329
Invasive growth: a MET-driven genetic programme for cancer and stem cells.
Boccaccio C, Comoglio PM., Nat. Rev. Cancer 6(8), 2006
PMID: 16862193
InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase.
Shen Y, Naujokas M, Park M, Ireton K., Cell 103(3), 2000
PMID: 11081636
The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells.
Braun L, Ohayon H, Cossart P., Mol. Microbiol. 27(5), 1998
PMID: 9535096
Listeria monocytogenes, a unique model in infection biology: an overview.
Cossart P, Toledo-Arana A., Microbes Infect. 10(9), 2008
PMID: 18775788
InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association.
Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P., Mol. Microbiol. 25(2), 1997
PMID: 9282740
Met receptor tyrosine kinase degradation is altered in response to the leucine-rich repeat of the Listeria invasion protein internalin B.
Gao X, Lorinczi M, Hill KS, Brooks NC, Dokainish H, Ireton K, Elferink LA., J. Biol. Chem. 284(2), 2008
PMID: 18990695
Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB.
Niemann HH, Jager V, Butler PJ, van den Heuvel J, Schmidt S, Ferraris D, Gherardi E, Heinz DW., Cell 130(2), 2007
PMID: 17662939
Domains in plexins: links to integrins and transcription factors.
Bork P, Doerks T, Springer TA, Snel B., Trends Biochem. Sci. 24(7), 1999
PMID: 10390613
Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor.
Gherardi E, Youles ME, Miguel RN, Blundell TL, Iamele L, Gough J, Bandyopadhyay A, Hartmann G, Butler PJ., Proc. Natl. Acad. Sci. U.S.A. 100(21), 2003
PMID: 14528000
Biosynthesis of the protein encoded by the c-met proto-oncogene.
Giordano S, Di Renzo MF, Narsimhan RP, Cooper CS, Rosa C, Comoglio PM., Oncogene 4(11), 1989
PMID: 2554238
Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin.
Komada M, Hatsuzawa K, Shibamoto S, Ito F, Nakayama K, Kitamura N., FEBS Lett. 328(1-2), 1993
PMID: 8344430
The sema domain.
Gherardi E, Love CA, Esnouf RM, Jones EY., Curr. Opin. Struct. Biol. 14(6), 2004
PMID: 15582390
Structure of the semaphorin-3A receptor binding module.
Antipenko A, Himanen JP, van Leyen K, Nardi-Dei V, Lesniak J, Barton WA, Rajashankar KR, Lu M, Hoemme C, Puschel AW, Nikolov DB., Neuron 39(4), 2003
PMID: 12925274
The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D.
Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI, Jones EY, Esnouf RM., Nat. Struct. Biol. 10(10), 2003
PMID: 12958590
Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor.
Stamos J, Lazarus RA, Yao X, Kirchhofer D, Wiesmann C., EMBO J. 23(12), 2004
PMID: 15167892
Structural basis of semaphorin-plexin signalling.
Janssen BJ, Robinson RA, Perez-Branguli F, Bell CH, Mitchell KJ, Siebold C, Jones EY., Nature 467(7319), 2010
PMID: 20877282
Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1.
Liu H, Juo ZS, Shim AH, Focia PJ, Chen X, Garcia KC, He X., Cell 142(5), 2010
PMID: 20727575
Structural basis for semaphorin signalling through the plexin receptor.
Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M, Yamashita N, Toyofuku T, Uchiyama S, Goshima Y, Kumanogoh A, Takagi J., Nature 467(7319), 2010
PMID: 20881961
Crystal structure of the Sema-PSI extracellular domain of human RON receptor tyrosine kinase.
Chao KL, Tsai IW, Chen C, Herzberg O., PLoS ONE 7(7), 2012
PMID: 22848655
GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation.
Banerjee M, Copp J, Vuga D, Marino M, Chapman T, van der Geer P, Ghosh P., Mol. Microbiol. 52(1), 2004
PMID: 15049825
Ligand-mediated dimerization of the Met receptor tyrosine kinase by the bacterial invasion protein InlB.
Ferraris DM, Gherardi E, Di Y, Heinz DW, Niemann HH., J. Mol. Biol. 395(3), 2009
PMID: 19900460
Fold and function of the InlB B-repeat.
Ebbes M, Bleymuller WM, Cernescu M, Nolker R, Brutschy B, Niemann HH., J. Biol. Chem. 286(17), 2011
PMID: 21345802
Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain.
Schubert WD, Gobel G, Diepholz M, Darji A, Kloer D, Hain T, Chakraborty T, Wehland J, Domann E, Heinz DW., J. Mol. Biol. 312(4), 2001
PMID: 11575932
The leucine-rich repeat structure.
Bella J, Hindle KL, McEwan PA, Lovell SC., Cell. Mol. Life Sci. 65(15), 2008
PMID: 18408889
A tandem repeat of a fragment of Listeria monocytogenes internalin B protein induces cell survival and proliferation.
Mungunsukh O, Lee YH, Marquez AP, Cecchi F, Bottaro DP, Day RM., Am. J. Physiol. Lung Cell Mol. Physiol. 299(6), 2010
PMID: 20889677
Structural insights into Met receptor activation.
Niemann HH., Eur. J. Cell Biol. 90(11), 2011
PMID: 21242015
Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes.
Machner MP, Frese S, Schubert WD, Orian-Rousseau V, Gherardi E, Wehland J, Niemann HH, Heinz DW., Mol. Microbiol. 48(6), 2003
PMID: 12791136
Structure-based view of epidermal growth factor receptor regulation.
Ferguson KM., Annu Rev Biophys 37(), 2008
PMID: 18573086
Structural symmetry and protein function.
Goodsell DS, Olson AJ., Annu Rev Biophys Biomol Struct 29(), 2000
PMID: 10940245
Assembly reflects evolution of protein complexes.
Levy ED, Boeri Erba E, Robinson CV, Teichmann SA., Nature 453(7199), 2008
PMID: 18563089
GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands.
Marino M, Banerjee M, Jonquieres R, Cossart P, Ghosh P., EMBO J. 21(21), 2002
PMID: 12411480
Statistical analysis of interface similarity in crystals of homologous proteins.
Xu Q, Canutescu AA, Wang G, Shapovalov M, Obradovic Z, Dunbrack RL Jr., J. Mol. Biol. 381(2), 2008
PMID: 18599072
X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB.
Niemann HH, Petoukhov MV, Hartlein M, Moulin M, Gherardi E, Timmins P, Heinz DW, Svergun DI., J. Mol. Biol. 377(2), 2008
PMID: 18262542
Structure of an ultraweak protein-protein complex and its crucial role in regulation of cell morphology and motility.
Vaynberg J, Fukuda T, Chen K, Vinogradova O, Velyvis A, Tu Y, Ng L, Wu C, Qin J., Mol. Cell 17(4), 2005
PMID: 15721255
Models for the specific adhesion of cells to cells.
Bell GI., Science 200(4342), 1978
PMID: 347575
Transforming binding affinities from three dimensions to two with application to cadherin clustering.
Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B., Nature 475(7357), 2011
PMID: 21796210
Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor.
Miyazawa K, Tsubouchi H, Naka D, Takahashi K, Okigaki M, Arakaki N, Nakayama H, Hirono S, Sakiyama O, Takahashi K., Biochem. Biophys. Res. Commun. 163(2), 1989
PMID: 2528952
Molecular cloning and expression of human hepatocyte growth factor.
Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S., Nature 342(6248), 1989
PMID: 2531289
A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis.
Hartmann G, Naldini L, Weidner KM, Sachs M, Vigna E, Comoglio PM, Birchmeier W., Proc. Natl. Acad. Sci. U.S.A. 89(23), 1992
PMID: 1280830
Crystal and molecular structure of human plasminogen kringle 4 refined at 1.9-A resolution.
Mulichak AM, Tulinsky A, Ravichandran KG., Biochemistry 30(43), 1991
PMID: 1657148
HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor.
Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T., FEBS Lett. 420(1), 1997
PMID: 9450538
Anti-cancer approach with NK4: Bivalent action and mechanisms.
Nakamura T, Sakai K, Nakamura T, Matsumoto K., Anticancer Agents Med Chem 10(1), 2010
PMID: 20015005
Pseudo-active sites of protease domains: HGF/Met and Sonic hedgehog signaling in cancer.
Maun HR, Kirchhofer D, Lazarus RA., Biol. Chem. 391(8), 2010
PMID: 20536384
Utilizing the activation mechanism of serine proteases to engineer hepatocyte growth factor into a Met antagonist.
Kirchhofer D, Lipari MT, Santell L, Billeci KL, Maun HR, Sandoval WN, Moran P, Ridgway J, Eigenbrot C, Lazarus RA., Proc. Natl. Acad. Sci. U.S.A. 104(13), 2007
PMID: 17372204
Allosteric peptide activators of pro-hepatocyte growth factor stimulate Met signaling.
Landgraf KE, Santell L, Billeci KL, Quan C, Young JC, Maun HR, Kirchhofer D, Lazarus RA., J. Biol. Chem. 285(51), 2010
PMID: 20937841
Structural and functional basis of the serine protease-like hepatocyte growth factor beta-chain in Met binding and signaling.
Kirchhofer D, Yao X, Peek M, Eigenbrot C, Lipari MT, Billeci KL, Maun HR, Moran P, Santell L, Wiesmann C, Lazarus RA., J. Biol. Chem. 279(38), 2004
PMID: 15218027
Identification of a competitive HGF antagonist encoded by an alternative transcript.
Chan AM, Rubin JS, Bottaro DP, Hirschfield DW, Chedid M, Aaronson SA., Science 254(5036), 1991
PMID: 1720571
Hepatocyte growth factor (HGF)/NK1 is a naturally occurring HGF/scatter factor variant with partial agonist/antagonist activity.
Cioce V, Csaky KG, Chan AM, Bottaro DP, Taylor WG, Jensen R, Aaronson SA, Rubin JS., J. Biol. Chem. 271(22), 1996
PMID: 8662798
NK1, a natural splice variant of hepatocyte growth factor/scatter factor, is a partial agonist in vivo.
Jakubczak JL, LaRochelle WJ, Merlino G., Mol. Cell. Biol. 18(3), 1998
PMID: 9488442
Heparin induces dimerization and confers proliferative activity onto the hepatocyte growth factor antagonists NK1 and NK2.
Schwall RH, Chang LY, Godowski PJ, Kahn DW, Hillan KJ, Bauer KD, Zioncheck TF., J. Cell Biol. 133(3), 1996
PMID: 8636243
Heparin binding and oligomerization of hepatocyte growth factor/scatter factor isoforms. Heparan sulfate glycosaminoglycan requirement for Met binding and signaling.
Sakata H, Stahl SJ, Taylor WG, Rosenberg JM, Sakaguchi K, Wingfield PT, Rubin JS., J. Biol. Chem. 272(14), 1997
PMID: 9083085
Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding.
Chirgadze DY, Hepple JP, Zhou H, Byrd RA, Blundell TL, Gherardi E., Nat. Struct. Biol. 6(1), 1999
PMID: 9886295
Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.
Sinha Roy R, Soni S, Harfouche R, Vasudevan PR, Holmes O, de Jonge H, Rowe A, Paraskar A, Hentschel DM, Chirgadze D, Blundell TL, Gherardi E, Mashelkar RA, Sengupta S., Proc. Natl. Acad. Sci. U.S.A. 107(31), 2010
PMID: 20639469
A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist.
Tolbert WD, Daugherty J, Gao C, Xie Q, Miranti C, Gherardi E, Vande Woude G, Xu HE., Proc. Natl. Acad. Sci. U.S.A. 104(37), 2007
PMID: 17804794
Crystal structure of the NK1 fragment of human hepatocyte growth factor at 2.0 A resolution.
Ultsch M, Lokker NA, Godowski PJ, de Vos AM., Structure 6(11), 1998
PMID: 9817840
A new crystal form of the NK1 splice variant of HGF/SF demonstrates extensive hinge movement and suggests that the NK1 dimer originates by domain swapping.
Watanabe K, Chirgadze DY, Lietha D, de Jonge H, Blundell TL, Gherardi E., J. Mol. Biol. 319(2), 2002
PMID: 12051906
Engineering hepatocyte growth factor fragments with high stability and activity as Met receptor agonists and antagonists.
Jones DS 2nd, Tsai PC, Cochran JR., Proc. Natl. Acad. Sci. U.S.A. 108(32), 2011
PMID: 21788476
Engineering the NK1 fragment of hepatocyte growth factor/scatter factor as a MET receptor antagonist.
Youles M, Holmes O, Petoukhov MV, Nessen MA, Stivala S, Svergun DI, Gherardi E., J. Mol. Biol. 377(3), 2008
PMID: 18291418
Mimics of the dimerization domain of hepatocyte growth factor exhibit anti-Met and anticancer activity.
Kawas LH, Yamamoto BJ, Wright JW, Harding JW., J. Pharmacol. Exp. Ther. 339(2), 2011
PMID: 21859930
The angiotensin IV analog Nle-Tyr-Leu-psi-(CH2-NH2)3-4-His-Pro-Phe (norleual) can act as a hepatocyte growth factor/c-Met inhibitor.
Yamamoto BJ, Elias PD, Masino JA, Hudson BD, McCoy AT, Anderson ZJ, Varnum MD, Sardinia MF, Wright JW, Harding JW., J. Pharmacol. Exp. Ther. 333(1), 2010
PMID: 20086056
A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met.
Basilico C, Arnesano A, Galluzzo M, Comoglio PM, Michieli P., J. Biol. Chem. 283(30), 2008
PMID: 18495663
Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains.
Holmes O, Pillozzi S, Deakin JA, Carafoli F, Kemp L, Butler PJ, Lyon M, Gherardi E., J. Mol. Biol. 367(2), 2007
PMID: 17258232
The Sema domain of Met is necessary for receptor dimerization and activation.
Kong-Beltran M, Stamos J, Wickramasinghe D., Cancer Cell 6(1), 2004
PMID: 15261143
Structural basis of hepatocyte growth factor/scatter factor and MET signalling.
Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt LG, Miguel RN, Blundell TL, Vande Woude GF, Skoglund U, Svergun DI., Proc. Natl. Acad. Sci. U.S.A. 103(11), 2006
PMID: 16537482
An alternatively processed mRNA generated from human hepatocyte growth factor gene.
Miyazawa K, Kitamura A, Naka D, Kitamura N., Eur. J. Biochem. 197(1), 1991
PMID: 1826653
Functional and biophysical characterization of recombinant human hepatocyte growth factor isoforms produced in Escherichia coli.
Stahl SJ, Wingfield PT, Kaufman JD, Pannell LK, Cioce V, Sakata H, Taylor WG, Rubin JS, Bottaro DP., Biochem. J. 326 ( Pt 3)(), 1997
PMID: 9307026
Disassociation of met-mediated biological responses in vivo: the natural hepatocyte growth factor/scatter factor splice variant NK2 antagonizes growth but facilitates metastasis.
Otsuka T, Jakubczak J, Vieira W, Bottaro DP, Breckenridge D, Larochelle WJ, Merlino G., Mol. Cell. Biol. 20(6), 2000
PMID: 10688652
Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis.
Montesano R, Soriano JV, Malinda KM, Ponce ML, Bafico A, Kleinman HK, Bottaro DP, Aaronson SA., Cell Growth Differ. 9(5), 1998
PMID: 9607557
Structural basis for agonism and antagonism of hepatocyte growth factor.
Tolbert WD, Daugherty-Holtrop J, Gherardi E, Vande Woude G, Xu HE., Proc. Natl. Acad. Sci. U.S.A. 107(30), 2010
PMID: 20624990
The X-ray crystal structure of full-length human plasminogen
Law, Cell Reprogram 1(), 2012
Signalling by HGF/SF and Met: the role of heparan sulphate co-receptors.
Kemp LE, Mulloy B, Gherardi E., Biochem. Soc. Trans. 34(Pt 3), 2006
PMID: 16709175
Crosstalk in Met receptor oncogenesis.
Lai AZ, Abella JV, Park M., Trends Cell Biol. 19(10), 2009
PMID: 19758803
VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex.
Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers G., Cancer Cell 22(1), 2012
PMID: 22789536
Regulation of the catalytic activity of the EGF receptor.
Endres NF, Engel K, Das R, Kovacs E, Kuriyan J., Curr. Opin. Struct. Biol. 21(6), 2011
PMID: 21868214
Targeting MET in cancer: rationale and progress.
Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G., Nat. Rev. Cancer 12(2), 2012
PMID: 22270953
Receptor tyrosine kinase transmembrane domains: function, dimer structure and dimerization energetics
Li, Cell Adhes. Migr. 4(), 2010
Sequence motifs, polar interactions and conformational changes in helical membrane proteins.
Curran AR, Engelman DM., Curr. Opin. Struct. Biol. 13(4), 2003
PMID: 12948770
Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs.
Senes A, Engel DE, DeGrado WF., Curr. Opin. Struct. Biol. 14(4), 2004
PMID: 15313242
The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website.
Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, Futreal PA, Stratton MR, Wooster R., Br. J. Cancer 91(2), 2004
PMID: 15188009
Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the MET oncogene.
Merlin S, Pietronave S, Locarno D, Valente G, Follenzi A, Prat M., Cancer Sci. 100(4), 2009
PMID: 19175607

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23123275
PubMed | Europe PMC

Suchen in

Google Scholar