Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2

Dam B, Dam S, Blom J, Liesack W (2013)
Plos One 8(10): e74767.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
Background: Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. Principal Findings: We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N-2 fixation, strain SC2 was found to grow with atmospheric N-2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol N-30(2)/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N-2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. Conclusions/Perspectives: Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate further research are, for example, absence of CRISPR/Cas systems in strain SC2, high number of iron acquisition systems in strain OB3b, and large number of transposases in strain Rockwell.
Erscheinungsjahr
Zeitschriftentitel
Plos One
Band
8
Zeitschriftennummer
10
Seite
e74767
ISSN
eISSN
PUB-ID

Zitieren

Dam B, Dam S, Blom J, Liesack W. Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2. Plos One. 2013;8(10):e74767.
Dam, B., Dam, S., Blom, J., & Liesack, W. (2013). Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2. Plos One, 8(10), e74767. doi:10.1371/journal.pone.0074767
Dam, B., Dam, S., Blom, J., and Liesack, W. (2013). Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2. Plos One 8, e74767.
Dam, B., et al., 2013. Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2. Plos One, 8(10), p e74767.
B. Dam, et al., “Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2”, Plos One, vol. 8, 2013, pp. e74767.
Dam, B., Dam, S., Blom, J., Liesack, W.: Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2. Plos One. 8, e74767 (2013).
Dam, Bomba, Dam, Somasri, Blom, Jochen, and Liesack, Werner. “Genome Analysis Coupled with Physiological Studies Reveals a Diverse Nitrogen Metabolism in Methylocystis sp Strain SC2”. Plos One 8.10 (2013): e74767.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Methane stimulates massive nitrogen loss from freshwater reservoirs in India.
Naqvi SWA, Lam P, Narvenkar G, Sarkar A, Naik H, Pratihary A, Shenoy DM, Gauns M, Kurian S, Damare S, Duret M, Lavik G, Kuypers MMM., Nat Commun 9(1), 2018
PMID: 29593290
Genomic Insights Into the Acid Adaptation of Novel Methanotrophs Enriched From Acidic Forest Soils.
Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, Kim JG, Jung MY, Rhee SK., Front Microbiol 9(), 2018
PMID: 30210468
Activity and Identification of Methanotrophic Bacteria in Arable and No-Tillage Soils from Lublin Region (Poland).
Szafranek-Nakonieczna A, Wolińska A, Zielenkiewicz U, Kowalczyk A, Stępniewska Z, Błaszczyk M., Microb Ecol (), 2018
PMID: 30171270
Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.
Warren MJ, Lin X, Gaby JC, Kretz CB, Kolton M, Morton PL, Pett-Ridge J, Weston DJ, Schadt CW, Kostka JE, Glass JB., Appl Environ Microbiol (), 2017
PMID: 28667112
Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions.
Walkiewicz A, Bulak P, Brzezińska M, Wnuk E, Bieganowski A., Environ Pollut 213(), 2016
PMID: 26946175
Effects of salinity on simultaneous reduction of perchlorate and nitrate in a methane-based membrane biofilm reactor.
Zhang Y, Chen JX, Wen LL, Tang Y, Zhao HP., Environ Sci Pollut Res Int 23(23), 2016
PMID: 27646453
Continuous nitrous oxide abatement in a novel denitrifying off-gas bioscrubber.
Frutos OD, Arvelo IA, Pérez R, Quijano G, Muñoz R., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25547842

119 References

Daten bereitgestellt von Europe PubMed Central.

Methanotrophic bacteria.
Hanson RS, Hanson TE., Microbiol. Rev. 60(2), 1996
PMID: 8801441
Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia.
Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF., Environ Microbiol Rep 1(5), 2009
PMID: 23765882
Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing.
Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC., Microbiology (Reading, Engl.) 148(Pt 8), 2002
PMID: 12177327
Diversity and activity of methanotrophic bacteria in different upland soils.
Knief C, Lipski A, Dunfield PF., Appl. Environ. Microbiol. 69(11), 2003
PMID: 14602631
The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration.
Knief C, Kolb S, Bodelier PL, Lipski A, Dunfield PF., Environ. Microbiol. 8(2), 2006
PMID: 16423018
Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.
Cebron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC., FEMS Microbiol. Ecol. 62(1), 2007
PMID: 17714486
Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes.
Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W., FEMS Microbiol. Ecol. 43(3), 2003
PMID: 19719661
Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.
Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC., Environ. Microbiol. 10(2), 2007
PMID: 18093158
Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock
AUTHOR UNKNOWN, 2012
Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp.
Belova SE, Baani M, Suzina NE, Bodelier PL, Liesack W, Dedysh SN., Environ Microbiol Rep 3(1), 2011
PMID: 23761229
Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol.
Im J, Lee SW, Yoon S, Dispirito AA, Semrau JD., Environ Microbiol Rep 3(2), 2010
PMID: 23761249
Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria.
Nyerges G, Han SK, Stein LY., Appl. Environ. Microbiol. 76(16), 2010
PMID: 20601518
Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from methylocystis strain SC2.
Ricke P, Erkel C, Kube M, Reinhardt R, Liesack W., Appl. Environ. Microbiol. 70(5), 2004
PMID: 15128567
Nitrogen fixation in obligate methanotrophs
AUTHOR UNKNOWN, 1983
nifH sequences and nitrogen fixation in type I and type II methanotrophs.
Auman AJ, Speake CC, Lidstrom ME., Appl. Environ. Microbiol. 67(9), 2001
PMID: 11525998
Nitrogen fixation by the verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' SolV.
Khadem AF, Pol A, Jetten MS, Op den Camp HJ., Microbiology (Reading, Engl.) 156(Pt 4), 2010
PMID: 20056702
Cell biology and molecular basis of denitrification.
Zumft WG., Microbiol. Mol. Biol. Rev. 61(4), 1997
PMID: 9409151
Arctic ozone loss due to denitrification
Waibel AE, Peter T, Carslaw KS, Oelhaf H, Wetzel G, Crutzen PJ, Poschl U, Tsias A, Reimer E, Fischer H., Science 283(5410), 1999
PMID: 10092225
Nitrifier genomics and evolution of the nitrogen cycle.
Klotz MG, Stein LY., FEMS Microbiol. Lett. 278(2), 2007
PMID: 18031536
Role of nitrifier denitrification in the production of nitrous oxide.
Wrage N, Velthof GL, Beusichem MLvan, Oenema O., Soil Biol. Biochem. 33(12/13), 2001
PMID: IND23266660
Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria.
Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG., FEMS Microbiol. Lett. 322(1), 2011
PMID: 21682764
Cytochrome P460 genes from the methanotroph Methylococcus capsulatus bath.
Bergmann DJ, Zahn JA, Hooper AB, DiSpirito AA., J. Bacteriol. 180(24), 1998
PMID: 9851984
Cytochromes P460 and c'-beta; a new family of high-spin cytochromes c.
Elmore BO, Bergmann DJ, Klotz MG, Hooper AB., FEBS Lett. 581(5), 2007
PMID: 17292891
Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath.
Poret-Peterson AT, Graham JE, Gulledge J, Klotz MG., ISME J 2(12), 2008
PMID: 18650926
Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath.
Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA., Rapid Commun. Mass Spectrom. 17(7), 2003
PMID: 12661029
Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances.
Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F., Appl. Environ. Microbiol. 72(1), 2006
PMID: 16391101
Nitrifying and denitrifying pathways of methanotrophic bacteria.
Stein LY, Klotz MG., Biochem. Soc. Trans. 39(6), 2011
PMID: 22103534
Surveying N2O-producing pathways in bacteria.
Stein LY., Meth. Enzymol. 486(), 2011
PMID: 21185434
Metabolism of inorganic N compounds by ammonia-oxidizing bacteria.
Arp DJ, Stein LY., Crit. Rev. Biochem. Mol. Biol. 38(6), 2003
PMID: 14695127
Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b.
Stein LY, Yoon S, Semrau JD, Dispirito AA, Crombie A, Murrell JC, Vuilleumier S, Kalyuzhnaya MG, Op den Camp HJ, Bringel F, Bruce D, Cheng JF, Copeland A, Goodwin L, Han S, Hauser L, Jetten MS, Lajus A, Land ML, Lapidus A, Lucas S, Medigue C, Pitluck S, Woyke T, Zeytun A, Klotz MG., J. Bacteriol. 192(24), 2010
PMID: 20952571
Genome sequence of the methanotrophic poly-β-hydroxybutyrate producer Methylocystis parvus OBBP.
del Cerro C, Garcia JM, Rojas A, Tortajada M, Ramon D, Galan B, Prieto MA, Garcia JL., J. Bacteriol. 194(20), 2012
PMID: 23012286
Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. strain Rockwell (ATCC 49242).
Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MS, Kalyuzhnaya MG, Kits KD, Klotz MG, Op den Camp HJ, Semrau JD, Vuilleumier S, Bruce DC, Cheng JF, Davenport KW, Goodwin L, Han S, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Medigue C, Pitluck S, Woyke T., J. Bacteriol. 193(10), 2011
PMID: 21441518
Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2.
Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF., J. Bacteriol. 192(14), 2010
PMID: 20472789
Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath).
Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, Dimitrov G, Jiang L, Scanlan D, Kang KH, Lewis M, Nelson KE, Methe B, Wu M, Heidelberg JF, Paulsen IT, Fouts D, Ravel J, Tettelin H, Ren Q, Read T, DeBoy RT, Seshadri R, Salzberg SL, Jensen HB, Birkeland NK, Nelson WC, Dodson RJ, Grindhaug SH, Holt I, Eidhammer I, Jonasen I, Vanaken S, Utterback T, Feldblyum TV, Fraser CM, Lillehaug JR, Eisen JA., PLoS Biol. 2(10), 2004
PMID: 15383840
Genome sequence of the obligate gammaproteobacterial methanotroph Methylomicrobium album strain BG8
AUTHOR UNKNOWN, 2013
Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z.
Vuilleumier S, Khmelenina VN, Bringel F, Reshetnikov AS, Lajus A, Mangenot S, Rouy Z, Op den Camp HJ, Jetten MS, Dispirito AA, Dunfield P, Klotz MG, Semrau JD, Stein LY, Barbe V, Medigue C, Trotsenko YA, Kalyuzhnaya MG., J. Bacteriol. 194(2), 2012
PMID: 22207753
Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09.
Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC., J. Bacteriol. 193(24), 2011
PMID: 22123758
Genome sequence of the Arctic methanotroph Methylobacter tundripaludum SV96.
Svenning MM, Hestnes AG, Wartiainen I, Stein LY, Klotz MG, Kalyuzhnaya MG, Spang A, Bringel F, Vuilleumier S, Lajus A, Medigue C, Bruce DC, Cheng JF, Goodwin L, Ivanova N, Han J, Han CS, Hauser L, Held B, Land ML, Lapidus A, Lucas S, Nolan M, Pitluck S, Woyke T., J. Bacteriol. 193(22), 2011
PMID: 21725021
Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia.
Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M., Biol. Direct 3(), 2008
PMID: 18593465
Draft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum strain SolV.
Khadem AF, Wieczorek AS, Pol A, Vuilleumier S, Harhangi HR, Dunfield PF, Kalyuzhnaya MG, Murrell JC, Francoijs KJ, Stunnenberg HG, Stein LY, DiSpirito AA, Semrau JD, Lajus A, Medigue C, Klotz MG, Jetten MS, Op den Camp HJ., J. Bacteriol. 194(14), 2012
PMID: 22740660
Complete sequence analysis of two methanotroph-specific repABC-containing plasmids from Methylocystis sp. strain SC2.
Dam B, Kube M, Dam S, Reinhardt R, Liesack W., Appl. Environ. Microbiol. 78(12), 2012
PMID: 22504811
Dynamic bacterial genome organization.
Kolsto AB., Mol. Microbiol. 24(2), 1997
PMID: 9159511
Prophinder: a computational tool for prophage prediction in prokaryotic genomes.
Lima-Mendez G, Van Helden J, Toussaint A, Leplae R., Bioinformatics 24(6), 2008
PMID: 18238785
The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria.
Makarova KS, Grishin NV, Koonin EV., Bioinformatics 22(21), 2006
PMID: 16895922
Toxin-antitoxin systems in bacteria and archaea.
Yamaguchi Y, Park JH, Inouye M., Annu. Rev. Genet. 45(), 2011
PMID: 22060041
The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site.
Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M., Cell 112(1), 2003
PMID: 12526800
Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase.
Zhang Y, Zhang J, Hara H, Kato I, Inouye M., J. Biol. Chem. 280(5), 2004
PMID: 15537630
Bacterial persistence by RNA endonucleases.
Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K., Proc. Natl. Acad. Sci. U.S.A. 108(32), 2011
PMID: 21788497
Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions.
Hazan R, Sat B, Engelberg-Kulka H., J. Bacteriol. 186(11), 2004
PMID: 15150257
CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats.
Grissa I, Vergnaud G, Pourcel C., Nucleic Acids Res. 35(Web Server issue), 2007
PMID: 17537822
CRISPR: new horizons in phage resistance and strain identification.
Barrangou R, Horvath P., Annu Rev Food Sci Technol 3(), 2011
PMID: 22224556
CRISPR/Cas system and its role in phage-bacteria interactions.
Deveau H, Garneau JE, Moineau S., Annu. Rev. Microbiol. 64(), 2010
PMID: 20528693
CRISPR/Cas, the immune system of bacteria and archaea.
Horvath P, Barrangou R., Science 327(5962), 2010
PMID: 20056882
Multidrug-resistant enterococci lack CRISPR-cas.
Palmer KL, Gilmore MS., MBio 1(4), 2010
PMID: 21060735
Comparative analysis of CRISPR loci in lactic acid bacteria genomes.
Horvath P, Coute-Monvoisin AC, Romero DA, Boyaval P, Fremaux C, Barrangou R., Int. J. Food Microbiol. 131(1), 2008
PMID: 18635282
Identification of replication origins in prokaryotic genomes.
Sernova NV, Gelfand MS., Brief. Bioinformatics 9(5), 2008
PMID: 18660512
Comprehensive prediction of chromosome dimer resolution sites in bacterial genomes.
Kono N, Arakawa K, Tomita M., BMC Genomics 12(), 2011
PMID: 21223577
RISSC: a novel database for ribosomal 16S-23S RNA genes spacer regions.
Garcia-Martinez J, Bescos I, Rodriguez-Sala JJ, Rodriguez-Valera F., Nucleic Acids Res. 29(1), 2001
PMID: 11125084
Genetics of bacterial ribosomes.
Nomura M, Morgan EA., Annu. Rev. Genet. 11(), 1977
PMID: 339818
Reconstitution of membrane proteolysis by FtsH.
Akiyama Y, Ito K., J. Biol. Chem. 278(20), 2003
PMID: 12642574
Cellular functions, mechanism of action, and regulation of FtsH protease.
Ito K, Akiyama Y., Annu. Rev. Microbiol. 59(), 2005
PMID: 15910274
Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related.
Holmes AJ, Costello A, Lidstrom ME, Murrell JC., FEMS Microbiol. Lett. 132(3), 1995
PMID: 7590173
Particulate methane monooxygenase genes in methanotrophs.
Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME., J. Bacteriol. 177(11), 1995
PMID: 7768803
Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils.
Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-Garcia C, Rodriguez G, Massol-Deya A, Krishnani KK, Ritalahti KM, Nissen S, Konstantinidis KT, Loffler FE., Proc. Natl. Acad. Sci. U.S.A. 109(48), 2012
PMID: 23150571
Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli.
Buurman ET, Teixeira de Mattos MJ, Neijssel OM., Arch. Microbiol. 155(4), 1991
PMID: 2048936
Nitrogen control in bacteria.
Merrick MJ, Edwards RA., Microbiol. Rev. 59(4), 1995
PMID: 8531888
Pathway choice in glutamate synthesis in Escherichia coli.
Helling RB., J. Bacteriol. 180(17), 1998
PMID: 9721297
Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions.
Kohler T, Harayama S, Ramos JL, Timmis KN., J. Bacteriol. 171(8), 1989
PMID: 2666396
Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli.
Weiss V, Kramer G, Dunnebier T, Flotho A., J. Mol. Microbiol. Biotechnol. 4(3), 2002
PMID: 11931552
Characteristics of a nitrogen-fixing methanotroph, Methylocystis T-1.
Takeda K., Antonie Van Leeuwenhoek 54(6), 1988
PMID: 3148292
Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog.
Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM., Int. J. Syst. Evol. Microbiol. 52(Pt 1), 2002
PMID: 11837310
The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain Bath
AUTHOR UNKNOWN, 1976
Nitrogen fixation and co-oxidation of ethylene by a methane-utilizing bacterium
AUTHOR UNKNOWN, 1974
Effect of fermentation conditions on N fixation by Methylococcus capsulatus
AUTHOR UNKNOWN, 1995
Production and consumption of nitric oxide by three methanotrophic bacteria.
Ren T, Roy R, Knowles R., Appl. Environ. Microbiol. 66(9), 2000
PMID: 10966405
Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria.
Yoshinari T, Knowles R., Biochem. Biophys. Res. Commun. 69(3), 1976
PMID: 817722
Influence of temperature on the composition and activity of denitrifying soil communities.
Braker G, Schwarz J, Conrad R., FEMS Microbiol. Ecol. 73(1), 2010
PMID: 20455938
Microaerobic and anaerobic metabolism of a Methylocystis parvus strain isolated from a denitrifying bioreactor.
Vecherskaya M, Dijkema C, Saad HR, Stams AJ., Environ Microbiol Rep 1(5), 2009
PMID: 23765898
Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP.
Pieja AJ, Sundstrom ER, Criddle CS., Appl. Environ. Microbiol. 77(17), 2011
PMID: 21724874
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Complete genome sequence of Saccharothrix espanaensis DSM 44229(T) and comparison to the other completely sequenced Pseudonocardiaceae.
Strobel T, Al-Dilaimi A, Blom J, Gessner A, Kalinowski J, Luzhetska M, Puhler A, Szczepanowski R, Bechthold A, Ruckert C., BMC Genomics 13(), 2012
PMID: 22958348
Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the methylophilaceae.
Lapidus A, Clum A, Labutti K, Kaluzhnaya MG, Lim S, Beck DA, Glavina Del Rio T, Nolan M, Mavromatis K, Huntemann M, Lucas S, Lidstrom ME, Ivanova N, Chistoserdova L., J. Bacteriol. 193(15), 2011
PMID: 21622745
Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera.
Lukjancenko O, Ussery DW, Wassenaar TM., Microb. Ecol. 63(3), 2011
PMID: 22031452
Hydrodynamic effects on microcapillary motility and chemotaxis assays of Methylosinus trichosporium OB3b.
Shonnard DR, Taylor RT, Tompson A, Knapp RB., Appl. Environ. Microbiol. 58(9), 1992
PMID: 1444383
Isolation of a Methylocystis strain containing a novel pmoA-like gene.
Dunfield PF, Yimga MT, Dedysh SN, Berger U, Liesack W, Heyer J., FEMS Microbiol. Ecol. 41(1), 2002
PMID: 19709235
Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing 'signature' fatty acids of type I methanotrophs.
Dedysh SN, Belova SE, Bodelier PL, Smirnova KV, Khmelenina VN, Chidthaisong A, Trotsenko YA, Liesack W, Dunfield PF., Int. J. Syst. Evol. Microbiol. 57(Pt 3), 2007
PMID: 17329771
Revised taxonomy of the methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs
AUTHOR UNKNOWN, 1993
Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78 degrees N).
Wartiainen I, Hestnes AG, McDonald IR, Svenning MM., Int. J. Syst. Evol. Microbiol. 56(Pt 3), 2006
PMID: 16514024
Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer.
Lindner AS, Pacheco A, Aldrich HC, Costello Staniec A, Uz I, Hodson DJ., Int. J. Syst. Evol. Microbiol. 57(Pt 8), 2007
PMID: 17684277
A simple assay for screening microorganisms for chalkophore production.
Yoon S, Dispirito AA, Kraemer SM, Semrau JD., Meth. Enzymol. 495(), 2011
PMID: 21419926
Transposases are the most abundant, most ubiquitous genes in nature.
Aziz RK, Breitbart M, Edwards RA., Nucleic Acids Res. 38(13), 2010
PMID: 20215432
Molecular phylogeny of type II methane-oxidizing bacteria isolated from various environments.
Heyer J, Galchenko VF, Dunfield PF., Microbiology (Reading, Engl.) 148(Pt 9), 2002
PMID: 12213929
Nitrogen metabolism in a new obligate methanotroph, 'Methylosinus' strain 6.
Toukdarian AE, Lidstrom ME., J. Gen. Microbiol. 130(7), 1984
PMID: 6432952
Measurement of denitrification in sediments with the 15N isotope pairing technique.
Steingruber SM, Friedrich J, Gachter R, Wehrli B., Appl. Environ. Microbiol. 67(9), 2001
PMID: 11525966
The RAST Server: rapid annotations using subsystems technology.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O., BMC Genomics 9(), 2008
PMID: 18261238

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24130670
PubMed | Europe PMC

Suchen in

Google Scholar