Whole cell biotransformation for reductive amination reactions

Klatte S, Lorenz E, Wendisch VF (2014)
BioEngineered 5: 56-62.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Erscheinungsjahr
Zeitschriftentitel
BioEngineered
Band
5
Seite
56-62
ISSN
eISSN
PUB-ID

Zitieren

Klatte S, Lorenz E, Wendisch VF. Whole cell biotransformation for reductive amination reactions. BioEngineered. 2014;5:56-62.
Klatte, S., Lorenz, E., & Wendisch, V. F. (2014). Whole cell biotransformation for reductive amination reactions. BioEngineered, 5, 56-62. doi:10.4161/bioe.27151
Klatte, S., Lorenz, E., and Wendisch, V. F. (2014). Whole cell biotransformation for reductive amination reactions. BioEngineered 5, 56-62.
Klatte, S., Lorenz, E., & Wendisch, V.F., 2014. Whole cell biotransformation for reductive amination reactions. BioEngineered, 5, p 56-62.
S. Klatte, E. Lorenz, and V.F. Wendisch, “Whole cell biotransformation for reductive amination reactions”, BioEngineered, vol. 5, 2014, pp. 56-62.
Klatte, S., Lorenz, E., Wendisch, V.F.: Whole cell biotransformation for reductive amination reactions. BioEngineered. 5, 56-62 (2014).
Klatte, Stephanie, Lorenz, Elisabeth, and Wendisch, Volker F. “Whole cell biotransformation for reductive amination reactions”. BioEngineered 5 (2014): 56-62.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives.
Wendisch VF, Mindt M, Pérez-García F., Appl Microbiol Biotechnol 102(8), 2018
PMID: 29520601
Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural.
Hossain GS, Yuan H, Li J, Shin HD, Wang M, Du G, Chen J, Liu L., Appl Environ Microbiol 83(1), 2017
PMID: 27795308
Enzymatic network for production of ether amines from alcohols.
Palacio CM, Crismaru CG, Bartsch S, Navickas V, Ditrich K, Breuer M, Abu R, Woodley JM, Baldenius K, Wu B, Janssen DB., Biotechnol Bioeng 113(9), 2016
PMID: 26915048
A synthetic biology approach for the transformation of l-α-amino acids to the corresponding enantiopure (R)- or (S)-α-hydroxy acids.
Gourinchas G, Busto E, Killinger M, Richter N, Wiltschi B, Kroutil W., Chem Commun (Camb) 51(14), 2015
PMID: 25574527

34 References

Daten bereitgestellt von Europe PubMed Central.

Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering.
Chemler JA, Fowler ZL, McHugh KP, Koffas MA., Metab. Eng. 12(2), 2010
PMID: 19628048
Biotechnological production of amino acids and derivatives: current status and prospects.
Leuchtenberger W, Huthmacher K, Drauz K., Appl. Microbiol. Biotechnol. 69(1), 2005
PMID: 16195792
Incorporation of unnatural amino acids for synthetic biology.
Voloshchuk N, Montclare JK., Mol Biosyst 6(1), 2010
PMID: 20024068
Industrial production of L-alanine using immobilized Escherichia coli and Pseudomonas dacunhae.
Chibata I, Tosa T, Takamatsu S., Microbiol. Sci. 1(3), 1984
PMID: 6444100
L-Phenylalanine Dehydrogenase from Brevibacterium Sp for Production of L-Phenylalanine by Reductive Amination of Phenylpyruvate
Hummel W, Schmidt E, Wandrey C, Kula MR., 1986
“Second-Generation process” for the synthesis of L-neopentylglycine: Asymmetric reductive amination using a recombinant whole cell catalyst
Groger H, May O, Werner H, Menzel A, Altenbuchner JA., 2006

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24406456
PubMed | Europe PMC

Suchen in

Google Scholar