Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity

Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D (2014)
Plant, Cell & Environment 37(3): 696-706.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
Plants overexpressing the RNA-binding protein AtGRP7 (AtGRP7-ox plants) constitutively express the PR-1 (PATHOGENESIS-RELATED-1), PR-2 and PR-5 transcripts associated with salicylic acid (SA)-mediated immunity and show enhanced resistance against Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we investigated whether the function of AtGRP7 in plant immunity depends on SA. Endogenous SA was elevated fivefold in AtGRP7-ox plants. The elevated PR-1, PR-2 and PR-5 levels were eliminated upon expression of the salicylate hydroxylase nahG in AtGRP7-ox plants and elevated PR-1 levels were suppressed by sid (salicylic acid deficient) 2-1 that is impaired in SA biosynthesis. RNA immunoprecipitation showed that AtGRP7 does not bind the PR-1 transcript in vivo, whereas it binds PDF1.2. Constitutive or inducible AtGRP7 overexpression increases PR-1 promoter activity, indicating that AtGRP7 affects PR-1 transcription. In line with this, the effect of AtGRP7 on PR-1 is suppressed by npr (non-expressor of PR genes) 1. Whereas AtGRP7-ox plants restricted growth of Pto DC3000 compared with wild type (wt), sid2-1 AtGRP7-ox plants allowed more growth than AtGRP7-ox plants. Furthermore, we show an enhanced hypersensitive response triggered by avirulent Pto DC3000 (AvrRpt2) in AtGRP7-ox compared with wt. In sid2-1 AtGRP7-ox, an intermediate phenotype was observed. Thus, AtGRP7 has both SA-dependent and SA-independent effects on plant immunity. (2013 John Wiley & Sons Ltd.)
Publishing Year
ISSN
PUB-ID

Cite this

Hackmann C, Korneli C, Kutyniok M, et al. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant, Cell & Environment. 2014;37(3):696-706.
Hackmann, C., Korneli, C., Kutyniok, M., Köster, T., Wiedenlübbert, M., Müller, C., & Staiger, D. (2014). Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant, Cell & Environment, 37(3), 696-706.
Hackmann, C., Korneli, C., Kutyniok, M., Köster, T., Wiedenlübbert, M., Müller, C., and Staiger, D. (2014). Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant, Cell & Environment 37, 696-706.
Hackmann, C., et al., 2014. Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant, Cell & Environment, 37(3), p 696-706.
C. Hackmann, et al., “Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity”, Plant, Cell & Environment, vol. 37, 2014, pp. 696-706.
Hackmann, C., Korneli, C., Kutyniok, M., Köster, T., Wiedenlübbert, M., Müller, C., Staiger, D.: Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity. Plant, Cell & Environment. 37, 696-706 (2014).
Hackmann, Christian, Korneli, Christin, Kutyniok, Magdalene, Köster, Tino, Wiedenlübbert, Matthias, Müller, Caroline, and Staiger, Dorothee. “Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity”. Plant, Cell & Environment 37.3 (2014): 696-706.
This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Koster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res. 42(15), 2014
PMID: 25104024

63 References

Data provided by Europe PubMed Central.

The Atger3 promoter confers circadian clock-regulated transcription with peak expression at the beginning of the night
Staiger, Plant Molecular Biology Reporter 40(), 1999
Emerging role for RNA-based regulation in plant immunity.
Staiger D, Korneli C, Lummer M, Navarro L., New Phytol. 197(2), 2013
PMID: 23163405
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol. 10(), 2010
PMID: 20946635
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana
Streitner, Plant Signaling & Behaviour 8(), 2013
Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins.
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X., Science 321(5891), 2008
PMID: 18635760
Salicylic Acid, a multifaceted hormone to combat disease.
Vlot AC, Dempsey DA, Klessig DF., Annu Rev Phytopathol 47(), 2009
PMID: 19400653
Isochorismate synthase is required to synthesize salicylic acid for plant defence.
Wildermuth MC, Dewdney J, Wu G, Ausubel FM., Nature 414(6863), 2001
PMID: 11734859
The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid.
Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C., Cell reports 1(6), 2012
PMID: 22813739
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23961939
PubMed | Europe PMC

Search this title in

Google Scholar