Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials

Müller C, Kraushaar K, Doebbe A, Mussgnug JH, Kruse O, Kroke E, Patel AV (2013)
Chemical Communications 49(86).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Müller C, Kraushaar K, Doebbe A, et al. Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials. Chemical Communications. 2013;49(86).
Müller, C., Kraushaar, K., Doebbe, A., Mussgnug, J. H., Kruse, O., Kroke, E., & Patel, A. V. (2013). Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials. Chemical Communications, 49(86).
Müller, C., Kraushaar, K., Doebbe, A., Mussgnug, J. H., Kruse, O., Kroke, E., and Patel, A. V. (2013). Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials. Chemical Communications 49.
Müller, C., et al., 2013. Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials. Chemical Communications, 49(86).
C. Müller, et al., “Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials”, Chemical Communications, vol. 49, 2013.
Müller, C., Kraushaar, K., Doebbe, A., Mussgnug, J.H., Kruse, O., Kroke, E., Patel, A.V.: Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials. Chemical Communications. 49, (2013).
Müller, Christiane, Kraushaar, Konstantin, Doebbe, Anja, Mussgnug, Jan H., Kruse, Olaf, Kroke, Edwin, and Patel, Anant V. “Synthesis of transparent aminosilane-derived silica based networks for entrapment of sensitive materials”. Chemical Communications 49.86 (2013).
This data publication is cited in the following publications:
This publication cites the following data publications:

40 References

Data provided by Europe PubMed Central.


Livage, J. Phys.: Condens. Matter 13(), 2001
Living hybrid materials capable of energy conversion and CO2 assimilation.
Meunier CF, Rooke JC, Leonard A, Xie H, Su BL., Chem. Commun. (Camb.) 46(22), 2010
PMID: 20401424

Rooke, Pure Appl. Chem. 80(), 2008

Vemmer, Biol. Control (), 2013

Williams, Annu. Rep. NMR Spectrosc. 15(), 1984

Livage, Rev. Mineral. Geochem. 64(), 2006

Sicard, Chem. Mater. 23(), 2011
Chlorophyll fluorescence--a practical guide.
Maxwell K, Johnson GN., J. Exp. Bot. 51(345), 2000
PMID: 10938857
Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii.
Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O., J. Biotechnol. 142(1), 2009
PMID: 19480949

Sandusky, FEBS Lett. 162(), 1983

Meyer, Smart Mater. Struct. 22(), 2013
Binary Si/N-[4.4]-Spirocycles with Two SiH(2)SiH(2) Loops.
Soldner M, Schier A, Schmidbaur H., Inorg Chem 37(3), 1998
PMID: 11670302

Wiltzsch, Dalton Trans. (), 2009

Tokutsu, J. Biol. Chem. 37(), 2012

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 24051654
PubMed | Europe PMC

Search this title in

Google Scholar