p-adic L-functions of automorphic forms

Deppe H (2013)
Bielefeld: Universitätsbibliothek Bielefeld.

Download
OA
Bielefeld Dissertation | English
Supervisor
Spieß, Michael
Abstract
Let F be a number field, p a prime number. To an (adelic) automorphic representation of GL2 over F (with certain conditions at places above p and ∞) we construct a p-adic L-function which interpolates the complex (Jacquet-Langlands) L-function at the central critical point. This is a generalization of a construction by Spieß over totally real fields. It seems well-suited to generalize his proof of the exceptional zero conjecture, which describes the order of vanishing of the p-adic L-function of an elliptic curve over F in terms of the Hasse-Weil L-function.
Year
PUB-ID

Cite this

Deppe H. p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld; 2013.
Deppe, H. (2013). p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld.
Deppe, H. (2013). p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld.
Deppe, H., 2013. p-adic L-functions of automorphic forms, Bielefeld: Universitätsbibliothek Bielefeld.
H. Deppe, p-adic L-functions of automorphic forms, Bielefeld: Universitätsbibliothek Bielefeld, 2013.
Deppe, H.: p-adic L-functions of automorphic forms. Universitätsbibliothek Bielefeld, Bielefeld (2013).
Deppe, Holger. p-adic L-functions of automorphic forms. Bielefeld: Universitätsbibliothek Bielefeld, 2013.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2013-10-06 23:18:15

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar