Kaede for detection of protein oligomerization

Wolf H, Barisas BG, Dietz K-J, Seidel T (2013)
Molecular plant 6(5): 1453-1462.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
FRET was applied between the green and the red form of the photoconvertible fluorescent protein Kaede for the analysis of conformational dynamics of proteins in the living plant cell. Furthermore, photoconversion of Kaede facilitates discriminating between autofluorescence and the Kaede emission.
Erscheinungsjahr
Zeitschriftentitel
Molecular plant
Band
6
Zeitschriftennummer
5
Seite
1453-1462
ISSN
eISSN
PUB-ID

Zitieren

Wolf H, Barisas BG, Dietz K-J, Seidel T. Kaede for detection of protein oligomerization. Molecular plant. 2013;6(5):1453-1462.
Wolf, H., Barisas, B. G., Dietz, K. - J., & Seidel, T. (2013). Kaede for detection of protein oligomerization. Molecular plant, 6(5), 1453-1462. doi:10.1093/mp/sst039
Wolf, H., Barisas, B. G., Dietz, K. - J., and Seidel, T. (2013). Kaede for detection of protein oligomerization. Molecular plant 6, 1453-1462.
Wolf, H., et al., 2013. Kaede for detection of protein oligomerization. Molecular plant, 6(5), p 1453-1462.
H. Wolf, et al., “Kaede for detection of protein oligomerization”, Molecular plant, vol. 6, 2013, pp. 1453-1462.
Wolf, H., Barisas, B.G., Dietz, K.-J., Seidel, T.: Kaede for detection of protein oligomerization. Molecular plant. 6, 1453-1462 (2013).
Wolf, Heike, Barisas, B. George, Dietz, Karl-Josef, and Seidel, Thorsten. “Kaede for detection of protein oligomerization”. Molecular plant 6.5 (2013): 1453-1462.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Quantifying Nucleation In Vivo Reveals the Physical Basis of Prion-like Phase Behavior.
Khan T, Kandola TS, Wu J, Venkatesan S, Ketter E, Lange JJ, Rodríguez Gama A, Box A, Unruh JR, Cook M, Halfmann R., Mol Cell 71(1), 2018
PMID: 29979963
A Plant Biologist's Toolbox to Study Translation.
Mazzoni-Putman SM, Stepanova AN., Front Plant Sci 9(), 2018
PMID: 30013583
Monitoring the action of redox-directed cancer therapeutics using a human peroxiredoxin-2-based probe.
Langford TF, Huang BK, Lim JB, Moon SJ, Sikes HD., Nat Commun 9(1), 2018
PMID: 30087344
Fluorescent Photo-conversion: A second chance to label unique cells.
Mellott AJ, Shinogle HE, Moore DS, Detamore MS., Cell Mol Bioeng 8(1), 2015
PMID: 25914756
Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components.
Nemet I, Ropelewski P, Imanishi Y., Photochem Photobiol Sci 14(10), 2015
PMID: 26345171
Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740

52 References

Daten bereitgestellt von Europe PubMed Central.

An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.
Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271129
Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution.
Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N., Proc. Natl. Acad. Sci. U.S.A. 101(20), 2004
PMID: 15136720
Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence
Billinton, Analyt. Biochem 291(), 2001
Transcriptional profiling of endogenous germ layer precursor cells identifies dusp4 as an essential gene in zebrafish endoderm specification.
Brown JL, Snir M, Noushmehr H, Kirby M, Hong SK, Elkahloun AG, Feldman B., Proc. Natl. Acad. Sci. U.S.A. 105(34), 2008
PMID: 18719100
Exploring plant endomembrane dynamics using the photoconvertible protein Kaede.
Brown SC, Bolte S, Gaudin M, Pereira C, Marion J, Soler MN, Satiat-Jeunemaitre B., Plant J. 63(4), 2010
PMID: 20545892
Phototropin blue-light receptors.
Christie JM., Annu Rev Plant Biol 58(), 2007
PMID: 17067285
Peroxiredoxins in plants and cyanobacteria.
Dietz KJ., Antioxid. Redox Signal. 15(4), 2011
PMID: 21194355
Gateway-compatible vectors for plant functional genomics and proteomics.
Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS., Plant J. 45(4), 2006
PMID: 16441352
GFP-based FRET microscopy in living plant cells.
Gadella TW Jr, van der Krogt GN , Bisseling T., Trends Plant Sci. 4(7), 1999
PMID: 10407445
Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light.
Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA., Nat. Biotechnol. 24(4), 2006
PMID: 16550175
Spectro-microscopy of living plant cells.
Harter K, Meixner AJ, Schleifenbaum F., Mol Plant 5(1), 2011
PMID: 21914652
Cell tracking using a photoconvertible fluorescent protein.
Hatta K, Tsujii H, Omura T., Nat Protoc 1(2), 2006
PMID: 17406330
Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede.
Hayashi I, Mizuno H, Tong KI, Furuta T, Tanaka F, Yoshimura M, Miyawaki A, Ikura M., J. Mol. Biol. 372(4), 2007
PMID: 17692334
Light-regulated plant growth and development
Kami, Curr. Top. Developm. Biol 91(), 2010
Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii.
Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, Asamizu E, Tabata S, Kanegae H, Takano M, Christie JM, Nagatani A, Briggs WR., Plant Physiol. 129(2), 2002
PMID: 12068117
Visible fluorescent proteins for FRET
Kremers, Laboratory Techn. Biochem. Mol. Biol 33(), 2009
Photoconversion in orange and red fluorescent proteins.
Kremers GJ, Hazelwood KL, Murphy CS, Davidson MW, Piston DW., Nat. Methods 6(5), 2009
PMID: 19363494
The action mechanisms of plant cryptochromes.
Liu H, Liu B, Zhao C, Pepper M, Lin C., Trends Plant Sci. 16(12), 2011
PMID: 21983106
Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1.
Mizohata E, Sakai H, Fusatomi E, Terada T, Murayama K, Shirouzu M, Yokoyama S., J. Mol. Biol. 354(2), 2005
PMID: 16214169
Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein.
Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A., Mol. Cell 12(4), 2003
PMID: 14580354
Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death.
Moon JC, Hah YS, Kim WY, Jung BG, Jang HH, Lee JR, Kim SY, Lee YM, Jeon MG, Kim CW, Cho MJ, Lee SY., J. Biol. Chem. 280(31), 2005
PMID: 15941719
Multiple redox and non-redox interactions define 2-Cys peroxiredoxin as a regulatory hub in the chloroplast.
Muthuramalingam M, Seidel T, Laxa M, Nunes de Miranda SM, Gartner F, Stroher E, Kandlbinder A, Dietz KJ., Mol Plant 2(6), 2009
PMID: 19995730
Dynamic behavior of individual cells in developing organotypic brain slices revealed by the photoconvertable protein Kaede.
Mutoh T, Miyata T, Kashiwagi S, Miyawaki A, Ogawa M., Exp. Neurol. 200(2), 2006
PMID: 16753144
Detecting fluorescent protein expression and co-localisation on single secretory vesicles with linear spectral unmixing.
Nadrigny F, Rivals I, Hirrlinger PG, Koulakoff A, Personnaz L, Vernet M, Allioux M, Chaumeil M, Ropert N, Giaume C, Kirchhoff F, Oheim M., Eur. Biophys. J. 35(6), 2006
PMID: 16568270
Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp
Pakhomov, Biochem. (Mosc.) 69(), 2004
Forster distances between green fluorescent protein pairs.
Patterson GH, Piston DW, Barisas BG., Anal. Biochem. 284(2), 2000
PMID: 10964438
Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase.
Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ., Mech. Dev. 124(3), 2006
PMID: 17223324
Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.
Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, Gonzalez M, Cejudo FJ., J. Exp. Bot. 61(14), 2010
PMID: 20616155
Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites.
Raab-Graham KF, Haddick PC, Jan YN, Jan LY., Science 314(5796), 2006
PMID: 17023663
Single molecule fluorescence imaging of the photoinduced conversion and bleaching behavior of the fluorescent protein Kaede.
Schafer SP, Dittrich PS, Petrov EP, Schwille P., Microsc. Res. Tech. 69(3), 2006
PMID: 16538628
New insights into the photophysics of DsRed by multiparameter spectroscopy on single proteins.
Schleifenbaum F, Blum C, Elgass K, Subramaniam V, Meixner AJ., J Phys Chem B 112(25), 2008
PMID: 18528973
Use of Kaede fusions to visualize recycling of G protein-coupled receptors.
Schmidt A, Wiesner B, Weisshart K, Schulz K, Furkert J, Lamprecht B, Rosenthal W, Schulein R., Traffic 10(1), 2008
PMID: 18939954
The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.
Schnitzer D, Seidel T, Sander T, Golldack D, Dietz KJ., Plant Cell Physiol. 52(5), 2011
PMID: 21474463
Targeting neural circuitry in zebrafish using GAL4 enhancer trapping.
Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T, Chi NC, Asakawa K, Kawakami K, Baier H., Nat. Methods 4(4), 2007
PMID: 17369834
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett. 579(20), 2005
PMID: 16061227
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
In vivo analysis of the 2-Cys peroxiredoxin oligomeric state by two-step FRET.
Seidel T, Seefeldt B, Sauer M, Dietz KJ., J. Biotechnol. 149(4), 2010
PMID: 20615439
A photoswitchable orange-to-far-red fluorescent protein, PSmOrange.
Subach OM, Patterson GH, Ting LM, Wang Y, Condeelis JS, Verkhusha VV., Nat. Methods 8(9), 2011
PMID: 21804536
Monitoring cellular movement in vivo with photoconvertible fluorescence protein "Kaede" transgenic mice.
Tomura M, Yoshida N, Tanaka J, Karasawa S, Miwa Y, Miyawaki A, Kanagawa O., Proc. Natl. Acad. Sci. U.S.A. 105(31), 2008
PMID: 18663225
Semi-rational engineering of a coral fluorescent protein into an efficient highlighter.
Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A., EMBO Rep. 6(3), 2005
PMID: 15731765
Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells.
Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH., Cell Struct. Funct. 29(2), 2004
PMID: 15342965
Axonal mRNAs: characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones.
Vogelaar CF, Gervasi NM, Gumy LF, Story DJ, Raha-Chowdhury R, Leung KM, Holt CE, Fawcett JW., Mol. Cell. Neurosci. 42(2), 2009
PMID: 19520167
Single-organelle tracking by two-photon conversion.
Watanabe W, Shimada T, Matsunaga S, Kurihara D, Fukui K, Shin-Ichi Arimura S, Tsutsumi N, Isobe K, Itoh K., Opt Express 15(5), 2007
PMID: 19532486
Autofluorescence removal by non-negative matrix factorization
Woolfe, IEEE Transact. Image Process 20(), 2011

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23430050
PubMed | Europe PMC

Suchen in

Google Scholar