A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes

Angelova P, Vieker H, Weber N-E, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, et al. (2013)
Acs Nano 7(8): 6489-6497.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of similar to 0.5 to similar to 3 nm. Monolayers of polyaromatic molecules (oligophenyls, hexaphenylbenzene, and polycyclic aromatic hydrocarbons) were assembled and exposed to electrons that cross-link them into CNMs; subsequent pyrolysis converts the CNMs into graphene sheets. In this transformation the thickness, porosity, and surface functionality of the nanomembranes are determined by the monolayers, and structural and functional features are passed on from the molecules through their monolayers to the CNMs and finally on to the graphene. Our procedure is scalable to large areas and allows the engineering of ultrathin nanomembranes by controlling the composition and structure of precursor molecules and their monolayers.
Erscheinungsjahr
Zeitschriftentitel
Acs Nano
Band
7
Zeitschriftennummer
8
Seite
6489-6497
ISSN
eISSN
PUB-ID

Zitieren

Angelova P, Vieker H, Weber N-E, et al. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano. 2013;7(8):6489-6497.
Angelova, P., Vieker, H., Weber, N. - E., Matei, D., Reimer, O., Meier, I., Kurasch, S., et al. (2013). A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano, 7(8), 6489-6497. doi:10.1021/nn402652f
Angelova, P., Vieker, H., Weber, N. - E., Matei, D., Reimer, O., Meier, I., Kurasch, S., Biskupek, J., Lorbach, D., Wunderlich, K., et al. (2013). A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano 7, 6489-6497.
Angelova, P., et al., 2013. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano, 7(8), p 6489-6497.
P. Angelova, et al., “A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes”, Acs Nano, vol. 7, 2013, pp. 6489-6497.
Angelova, P., Vieker, H., Weber, N.-E., Matei, D., Reimer, O., Meier, I., Kurasch, S., Biskupek, J., Lorbach, D., Wunderlich, K., Chen, L., Terfort, A., Klapper, M., Muellen, K., Kaiser, U., Gölzhäuser, A., Turchanin, A.: A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano. 7, 6489-6497 (2013).
Angelova, Polina, Vieker, Henning, Weber, Nils-Eike, Matei, Dan, Reimer, Oliver, Meier, Isabella, Kurasch, Simon, Biskupek, Johannes, Lorbach, Dominik, Wunderlich, Katrin, Chen, Long, Terfort, Andreas, Klapper, Markus, Muellen, Klaus, Kaiser, Ute, Gölzhäuser, Armin, and Turchanin, Andrey. “A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes”. Acs Nano 7.8 (2013): 6489-6497.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Photofunctionality in Porphyrin-Hybridized Bis(dipyrrinato)zinc(II) Complex Micro- and Nanosheets.
Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H., Angew Chem Int Ed Engl 56(13), 2017
PMID: 28240405
Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes.
Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R., Nat Nanotechnol 12(6), 2017
PMID: 28584292
Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy.
Shyam Kumar CN, Chakravadhanula VSK, Riaz A, Dehm S, Wang D, Mu X, Flavel B, Krupke R, Kübel C., Nanoscale 9(35), 2017
PMID: 28799608
Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingólfsson O, Gölzhäuser A., Beilstein J Nanotechnol 8(), 2017
PMID: 29259871
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Templating for hierarchical structure control in carbon materials.
Schrettl S, Schulte B, Frauenrath H., Nanoscale 8(45), 2016
PMID: 27827511
Light-Controlled Ion Transport through Biomimetic DNA-Based Channels.
Li P, Xie G, Kong XY, Zhang Z, Xiao K, Wen L, Jiang L., Angew Chem Int Ed Engl 55(50), 2016
PMID: 27860091
Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
Sischka A, Galla L, Meyer AJ, Spiering A, Knust S, Mayer M, Hall AR, Beyer A, Reimann P, Gölzhäuser A, Anselmetti D., Analyst 140(14), 2015
PMID: 25768647
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
An atomically thin matter-wave beamsplitter.
Brand C, Sclafani M, Knobloch C, Lilach Y, Juffmann T, Kotakoski J, Mangler C, Winter A, Turchanin A, Meyer J, Cheshnovsky O, Arndt M., Nat Nanotechnol 10(10), 2015
PMID: 26301904
DOS and electron attachment effects in the electron-induced vibrational excitation of terphenylthiol SAMs.
Houplin J, Amiaud L, Dablemont C, Lafosse A., Phys Chem Chem Phys 17(45), 2015
PMID: 26529112
Free-Standing Monolayer Two-Dimensional Supramolecular Organic Framework with Good Internal Order.
Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Müllen K, Feng X., J Am Chem Soc 137(45), 2015
PMID: 26529142
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Gölzhäuser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285
Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature.
Schrettl S, Stefaniu C, Schwieger C, Pasche G, Oveisi E, Fontana Y, Fontcuberta i Morral A, Reguera J, Petraglia R, Corminboeuf C, Brezesinski G, Frauenrath H., Nat Chem 6(6), 2014
PMID: 24848231
All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications.
Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A., Adv Mater 26(28), 2014
PMID: 24862387
Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes.
Mrugalla A, Schnack J., Beilstein J Nanotechnol 5(), 2014
PMID: 24991523
Converting molecular monolayers into functional membranes.
Anselmetti D, Gölzhäuser A., Angew Chem Int Ed Engl 53(46), 2014
PMID: 25138468
In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene.
Pan CT, Hinks JA, Ramasse QM, Greaves G, Bangert U, Donnelly SE, Haigh SJ., Sci Rep 4(), 2014
PMID: 25284688

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23802686
PubMed | Europe PMC

Suchen in

Google Scholar