A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes

Angelova P, Vieker H, Weber N-E, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, et al. (2013)
Acs Nano 7(8): 6489-6497.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of similar to 0.5 to similar to 3 nm. Monolayers of polyaromatic molecules (oligophenyls, hexaphenylbenzene, and polycyclic aromatic hydrocarbons) were assembled and exposed to electrons that cross-link them into CNMs; subsequent pyrolysis converts the CNMs into graphene sheets. In this transformation the thickness, porosity, and surface functionality of the nanomembranes are determined by the monolayers, and structural and functional features are passed on from the molecules through their monolayers to the CNMs and finally on to the graphene. Our procedure is scalable to large areas and allows the engineering of ultrathin nanomembranes by controlling the composition and structure of precursor molecules and their monolayers.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Angelova P, Vieker H, Weber N-E, et al. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano. 2013;7(8):6489-6497.
Angelova, P., Vieker, H., Weber, N. - E., Matei, D., Reimer, O., Meier, I., Kurasch, S., et al. (2013). A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano, 7(8), 6489-6497.
Angelova, P., Vieker, H., Weber, N. - E., Matei, D., Reimer, O., Meier, I., Kurasch, S., Biskupek, J., Lorbach, D., Wunderlich, K., et al. (2013). A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano 7, 6489-6497.
Angelova, P., et al., 2013. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano, 7(8), p 6489-6497.
P. Angelova, et al., “A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes”, Acs Nano, vol. 7, 2013, pp. 6489-6497.
Angelova, P., Vieker, H., Weber, N.-E., Matei, D., Reimer, O., Meier, I., Kurasch, S., Biskupek, J., Lorbach, D., Wunderlich, K., Chen, L., Terfort, A., Klapper, M., Muellen, K., Kaiser, U., Gölzhäuser, A., Turchanin, A.: A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano. 7, 6489-6497 (2013).
Angelova, Polina, Vieker, Henning, Weber, Nils-Eike, Matei, Dan, Reimer, Oliver, Meier, Isabella, Kurasch, Simon, Biskupek, Johannes, Lorbach, Dominik, Wunderlich, Katrin, Chen, Long, Terfort, Andreas, Klapper, Markus, Muellen, Klaus, Kaiser, Ute, Gölzhäuser, Armin, and Turchanin, Andrey. “A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes”. Acs Nano 7.8 (2013): 6489-6497.
This data publication is cited in the following publications:
This publication cites the following data publications:

12 Citations in Europe PMC

Data provided by Europe PubMed Central.

Free-Standing Monolayer Two-Dimensional Supramolecular Organic Framework with Good Internal Order.
Pfeffermann M, Dong R, Graf R, Zajaczkowski W, Gorelik T, Pisula W, Narita A, Mullen K, Feng X., J. Am. Chem. Soc. 137(45), 2015
PMID: 26529142
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Golzhauser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
An atomically thin matter-wave beamsplitter.
Brand C, Sclafani M, Knobloch C, Lilach Y, Juffmann T, Kotakoski J, Mangler C, Winter A, Turchanin A, Meyer J, Cheshnovsky O, Arndt M., Nat Nanotechnol 10(10), 2015
PMID: 26301904
Controlled translocation of DNA through nanopores in carbon nano-, silicon-nitride- and lipid-coated membranes.
Sischka A, Galla L, Meyer AJ, Spiering A, Knust S, Mayer M, Hall AR, Beyer A, Reimann P, Golzhauser A, Anselmetti D., Analyst 140(14), 2015
PMID: 25768647
In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene.
Pan CT, Hinks JA, Ramasse QM, Greaves G, Bangert U, Donnelly SE, Haigh SJ., Sci Rep 4(), 2014
PMID: 25284688
Converting molecular monolayers into functional membranes.
Anselmetti D, Golzhauser A., Angew. Chem. Int. Ed. Engl. 53(46), 2014
PMID: 25138468
Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes.
Mrugalla A, Schnack J., Beilstein J Nanotechnol 5(), 2014
PMID: 24991523
All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications.
Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A., Adv. Mater. Weinheim 26(28), 2014
PMID: 24862387
Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature.
Schrettl S, Stefaniu C, Schwieger C, Pasche G, Oveisi E, Fontana Y, Fontcuberta i Morral A, Reguera J, Petraglia R, Corminboeuf C, Brezesinski G, Frauenrath H., Nat Chem 6(6), 2014
PMID: 24848231
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Golzhauser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23802686
PubMed | Europe PMC

Search this title in

Google Scholar