Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate

Milz F, Harder A, Neuhaus P, Breitkreuz-Korff O, Walhorn V, Lübke T, Anselmetti D, Dierks T (2013)
Biochim Biophys Acta 1830(11): 5287-5298.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
BACKGROUND: Sulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD). METHODS: Affinity-chromatography, AFM-single-molecule force spectroscopy (SMFS) and immunofluorescence on living cells were used to analyze specificity, kinetics and structural basis of this interaction. RESULTS: Full-length Sulf1 interacts broadly with sulfated glycosaminoglycans (GAGs) showing, however, higher affinity toward HS and heparin than toward chondroitin sulfate or dermatan sulfate. Strong interaction depends on the presence of Sulf1-substrate groups, as Sulf1 bound significantly weaker to HS after enzymatic 6-O-desulfation by Sulf1 pretreatment, hence suggesting autoregulation of Sulf1/substrate association. In contrast, HD alone exhibited outstanding specificity toward HS and did not interact with chondroitin sulfate, dermatan sulfate or 6-O-desulfated HS. Dynamic SMFS revealed an off-rate of 0.04/s, i.e., ~500-fold higher than determined by surface plasmon resonance. SMFS allowed resolving the dynamics of single dissociation events in each force-distance curve. HD subdomain constructs revealed heparin interaction sites in the inner and C-terminal regions of HD. CONCLUSIONS: Specific substrate binding of Sulf1 is mediated by HD and involves at least two separate HS-binding sites. Surface plasmon resonance KD-values reflect a high avidity resulting from multivalent HD/heparin interaction. While this ensures stable cell-surface HS association, the dynamic cooperation of binding sites at HD and also the catalytic domain enables processive action of Sulf1 along or across HS chains. GENERAL SIGNIFICANCE: HD confers a novel and highly dynamic mode of protein interaction with HS.
Erscheinungsjahr
Zeitschriftentitel
Biochim Biophys Acta
Band
1830
Zeitschriftennummer
11
Seite
5287-5298
ISSN
PUB-ID

Zitieren

Milz F, Harder A, Neuhaus P, et al. Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta. 2013;1830(11):5287-5298.
Milz, F., Harder, A., Neuhaus, P., Breitkreuz-Korff, O., Walhorn, V., Lübke, T., Anselmetti, D., et al. (2013). Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta, 1830(11), 5287-5298. doi:10.1016/j.bbagen.2013.07.014
Milz, F., Harder, A., Neuhaus, P., Breitkreuz-Korff, O., Walhorn, V., Lübke, T., Anselmetti, D., and Dierks, T. (2013). Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta 1830, 5287-5298.
Milz, F., et al., 2013. Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta, 1830(11), p 5287-5298.
F. Milz, et al., “Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate”, Biochim Biophys Acta, vol. 1830, 2013, pp. 5287-5298.
Milz, F., Harder, A., Neuhaus, P., Breitkreuz-Korff, O., Walhorn, V., Lübke, T., Anselmetti, D., Dierks, T.: Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate. Biochim Biophys Acta. 1830, 5287-5298 (2013).
Milz, Fabian, Harder, Alexander, Neuhaus, Phillipp, Breitkreuz-Korff, Olga, Walhorn, Volker, Lübke, Torben, Anselmetti, Dario, and Dierks, Thomas. “Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate”. Biochim Biophys Acta 1830.11 (2013): 5287-5298.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Exploring the Sulfatase 1 Catch Bond Free Energy Landscape using Jarzynski's Equality.
Walhorn V, Möller AK, Bartz C, Dierks T, Anselmetti D., Sci Rep 8(1), 2018
PMID: 30442949
The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate.
El Masri R, Seffouh A, Lortat-Jacob H, Vivès RR., Glycoconj J 34(3), 2017
PMID: 27812771
Catch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
Harder A, Möller AK, Milz F, Neuhaus P, Walhorn V, Dierks T, Anselmetti D., Biophys J 108(7), 2015
PMID: 25863062
Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery.
Fulcher YG, Sanganna Gari RR, Frey NC, Zhang F, Linhardt RJ, King GM, Van Doren SR., ACS Chem Biol 9(4), 2014
PMID: 24495220

57 References

Daten bereitgestellt von Europe PubMed Central.

Heparan sulfate: decoding a dynamic multifunctional cell regulator.
Turnbull J, Powell A, Guimond S., Trends Cell Biol. 11(2), 2001
PMID: 11166215
Heparan sulphate proteoglycans fine-tune mammalian physiology.
Bishop JR, Schuksz M, Esko JD., Nature 446(7139), 2007
PMID: 17460664
The molecular diversity of glycosaminoglycans shapes animal development.
Bulow HE, Hobert O., Annu. Rev. Cell Dev. Biol. 22(), 2006
PMID: 16805665
Defining the interleukin-8-binding domain of heparan sulfate.
Spillmann D, Witt D, Lindahl U., J. Biol. Chem. 273(25), 1998
PMID: 9624135
Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization.
Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M., Mol. Cell 6(3), 2000
PMID: 11030354
Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin.
Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S., J. Biol. Chem. 279(7), 2003
PMID: 14645250
SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation.
Ai X, Kitazawa T, Do AT, Kusche-Gullberg M, Labosky PA, Emerson CP Jr., Development 134(18), 2007
PMID: 17720696
Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase.
Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr., Science 293(5535), 2001
PMID: 11533491
Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans.
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD., J. Biol. Chem. 277(51), 2002
PMID: 12368295
QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling.
Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr., J. Cell Biol. 162(2), 2003
PMID: 12860968
Roles of heparan sulfate sulfation in dentinogenesis.
Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Islam MN, Kawanabe N, Saito M, Kamioka H, Adachi T, Dierks T, Yamashiro T., J. Biol. Chem. 287(15), 2012
PMID: 22351753
HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1.
Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen SD., BMC Biochem. 7(), 2006
PMID: 16417632
HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma.
Lai JP, Chien J, Strome SE, Staub J, Montoya DP, Greene EL, Smith DI, Roberts LR, Shridhar V., Oncogene 23(7), 2004
PMID: 14973553
Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival.
Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M, Bolon B, French DM, Ashkenazi A., PLoS ONE 2(6), 2007
PMID: 17593974
The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T., J. Biotechnol. 129(2), 2007
PMID: 17337080
Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development.
Ratzka A, Kalus I, Moser M, Dierks T, Mundlos S, Vortkamp A., Dev. Dyn. 237(2), 2008
PMID: 18213582
Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity.
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T., J. Cell. Mol. Med. 13(11-12), 2009
PMID: 20394677
SULFs in human neoplasia: implication as progression and prognosis factors.
Bret C, Moreaux J, Schved JF, Hose D, Klein B., J Transl Med 9(), 2011
PMID: 21599997
Sulfatase 1 and sulfatase 2 in hepatocellular carcinoma: associated signaling pathways, tumor phenotypes, and survival
Yang, Genes Chromosom. Cancer 50(), 2011
Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate.
Rosen SD, Lemjabbar-Alaoui H., Expert Opin. Ther. Targets 14(9), 2010
PMID: 20629619
Glucosamine-6-sulfamate analogues of heparan sulfate as inhibitors of endosulfatases.
Schelwies M, Brinson D, Otsuki S, Hong YH, Lotz MK, Wong CH, Hanson SR., Chembiochem 11(17), 2010
PMID: 20973023
Direct detection of HSulf-1 and HSulf-2 activities on extracellular heparan sulfate and their inhibition by PI-88.
Hossain MM, Hosono-Fukao T, Tang R, Sugaya N, van Kuppevelt TH, Jenniskens GJ, Kimata K, Rosen SD, Uchimura K., Glycobiology 20(2), 2009
PMID: 19822709
hSulf-1 gene exhibits anticancer efficacy through negatively regulating VEGFR-2 signaling in human cancers.
Ji W, Yang J, Wang D, Cao L, Tan W, Qian H, Sun B, Qian Q, Yin Z, Wu M, Su C., PLoS ONE 6(8), 2011
PMID: 21853101
HSulf-1 inhibits angiogenesis and tumorigenesis in vivo.
Narita K, Staub J, Chien J, Meyer K, Bauer M, Friedl A, Ramakrishnan S, Shridhar V., Cancer Res. 66(12), 2006
PMID: 16778174
Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2.
Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP Jr., J. Biol. Chem. 281(8), 2005
PMID: 16377625
Functional consequences of the subdomain organization of the sulfs.
Tang R, Rosen SD., J. Biol. Chem. 284(32), 2009
PMID: 19520866
Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain.
Frese MA, Milz F, Dick M, Lamanna WC, Dierks T., J. Biol. Chem. 284(41), 2009
PMID: 19666466
Molecular modeling of protein-glycosaminoglycan interactions.
Cardin AD, Weintraub HJ., Arteriosclerosis 9(1), 1989
PMID: 2463827
Localization and characterization of a heparin binding domain peptide of human von Willebrand factor.
Sobel M, Soler DF, Kermode JC, Harris RB., J. Biol. Chem. 267(13), 1992
PMID: 1577724
Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins.
Hileman RE, Fromm JR, Weiler JM, Linhardt RJ., Bioessays 20(2), 1998
PMID: 9631661
Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization.
Osmond RI, Kett WC, Skett SE, Coombe DR., Anal. Biochem. 310(2), 2002
PMID: 12423639
Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods
Lévy, Nanotechnology 13(), 2002
Models for the specific adhesion of cells to cells.
Bell GI., Science 200(4342), 1978
PMID: 347575
Dynamic strength of molecular adhesion bonds.
Evans E, Ritchie K., Biophys. J. 72(4), 1997
PMID: 9083660
Single-molecule force spectroscopy of cartilage aggrecan self-adhesion.
Harder A, Walhorn V, Dierks T, Fernandez-Busquets X, Anselmetti D., Biophys. J. 99(10), 2010
PMID: 21081100
Single-molecule experiments to elucidate the minimal requirement for DNA recognition by transcription factor epitopes.
Wollschlager K, Gaus K, Kornig A, Eckel R, Wilking SD, McIntosh M, Majer Z, Becker A, Ros R, Anselmetti D, Sewald N., Small 5(4), 2009
PMID: 19199332
Refined procedure of evaluating experimental single-molecule force spectroscopy data
Fuhrmann, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77(), 2008
Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy.
Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C., J. Struct. Biol. 143(3), 2003
PMID: 14572479
HSulf sulfatases catalyze processive and oriented 6-O-desulfation of heparan sulfate that differentially regulates fibroblast growth factor activity.
Seffouh A, Milz F, Przybylski C, Laguri C, Oosterhof A, Bourcier S, Sadir R, Dutkowski E, Daniel R, van Kuppevelt TH, Dierks T, Lortat-Jacob H, Vives RR., FASEB J. 27(6), 2013
PMID: 23457216
Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate.
Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H., Curr. Opin. Struct. Biol. 13(5), 2003
PMID: 14568617
Chain length and concentration dependence of ß-cyclodextrin-ferrocene host–guest complex rupture forces probed by dynamic force microscopy
Zapotoczny, Langmuir 18(), 2002
Fibroblast growth factor-2 antagonist activity and angiostatic capacity of sulfated Escherichia coli K5 polysaccharide derivatives.
Leali D, Belleri M, Urbinati C, Coltrini D, Oreste P, Zoppetti G, Ribatti D, Rusnati M, Presta M., J. Biol. Chem. 276(41), 2001
PMID: 11473122
Single-molecule dynamic force spectroscopy of the fibronectin-heparin interaction.
Mitchell G, Lamontagne CA, Lebel R, Grandbois M, Malouin F., Biochem. Biophys. Res. Commun. 364(3), 2007
PMID: 17959151
Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy.
Fritz J, Katopodis AG, Kolbinger F, Anselmetti D., Proc. Natl. Acad. Sci. U.S.A. 95(21), 1998
PMID: 9770478
Affinity-matured recombinant antibody fragments analyzed by single-molecule force spectroscopy.
Morfill J, Blank K, Zahnd C, Luginbuhl B, Kuhner F, Gottschalk KE, Pluckthun A, Gaub HE., Biophys. J. 93(10), 2007
PMID: 17675348
Structure of a human lysosomal sulfatase.
Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM., Structure 5(2), 1997
PMID: 9032078
Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis.
Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W., Biochemistry 37(11), 1998
PMID: 9521684
Structure of human estrone sulfatase suggests functional roles of membrane association.
Hernandez-Guzman FG, Higashiyama T, Pangborn W, Osawa Y, Ghosh D., J. Biol. Chem. 278(25), 2003
PMID: 12657638
Elucidating the function of non catalytic domains of collagenases and aggrecanases.
Nagase H, Fushimi K., Connect. Tissue Res. 49(3), 2008
PMID: 18661336

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23891937
PubMed | Europe PMC

Suchen in

Google Scholar