Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway

Ache JM, Dürr V (2013)
Journal of Neurophysiology 110(9): 2099-2112.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Much like mammals use their whiskers, insects use their antennae for tactile near-range orientation during locomotion. Stick insects rapidly transfer spatial information about antennal touch location to the front legs, allowing for aimed reach-to-grasp movements. This adaptive behavior requires a spatial coordinate transformation from “antennal contact space” to “leg posture space”. Therefore, a neural pathway must convey proprioceptive and tactile information about antennal posture and contact site to thoracic motor networks. Here, we analyze proprioceptive encoding properties of descending interneurons (DINs) that convey information about antennal posture and movement to the thoracic ganglia. Based on the response properties of 110 DINs to imposed movement of the distal antennal joint, we distinguish five functional DIN groups according to their sensitivity to three parameters: movement direction, movement velocity, and antennal joint angle. These groups are: Simple position-sensitive DINs which signal the antennal joint angle; Dynamic position-sensitive DINs which signal the joint angle with strong dependency on movement; Unspecific movement-sensitive DINs which signal movement but not the velocity, position or direction of movement; and ON- and OFF-type velocity-sensitive DINs. The activity of the latter two is increased/attenuated during antennal movement with the spike rate increasing/decreasing linearly with antennal joint angle velocity. Some movement-sensitive DINs convey spikes to the thorax within 11 ms, suggesting a rapid, direct pathway from antennal mechanosensory to thoracic motor networks. We discuss how the population of DINs could provide the neural basis for the intersegmental spatial coordinate transfer between a touch sensor of the head and thoracic motor networks.
Erscheinungsjahr
Zeitschriftentitel
Journal of Neurophysiology
Band
110
Zeitschriftennummer
9
Seite
2099-2112
ISSN
eISSN
PUB-ID

Zitieren

Ache JM, Dürr V. Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. Journal of Neurophysiology. 2013;110(9):2099-2112.
Ache, J. M., & Dürr, V. (2013). Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. Journal of Neurophysiology, 110(9), 2099-2112. doi:10.1152/jn.00281.2013
Ache, J. M., and Dürr, V. (2013). Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. Journal of Neurophysiology 110, 2099-2112.
Ache, J.M., & Dürr, V., 2013. Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. Journal of Neurophysiology, 110(9), p 2099-2112.
J.M. Ache and V. Dürr, “Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway”, Journal of Neurophysiology, vol. 110, 2013, pp. 2099-2112.
Ache, J.M., Dürr, V.: Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway. Journal of Neurophysiology. 110, 2099-2112 (2013).
Ache, Jan Marek, and Dürr, Volker. “Encoding of near-range spatial information by descending interneurons in the stick insect antennal mechanosensory pathway”. Journal of Neurophysiology 110.9 (2013): 2099-2112.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effects of Touch Location and Intensity on Interneurons of the Leech Local Bend Network.
Pirschel F, Hilgen G, Kretzberg J., Sci Rep 8(1), 2018
PMID: 29445203
Neural Circuitry for Target Selection and Action Selection in Animal Behavior.
Hoke KL, Hebets EA, Shizuka D., Integr Comp Biol 57(4), 2017
PMID: 29048534

57 References

Daten bereitgestellt von Europe PubMed Central.

The specificity of central nervous projections of locust mechanoreceptors.
Braunig P, Pfluger HJ, Hustert R., J. Comp. Neurol. 218(2), 1983
PMID: 6886072
Structure and physiology of the locust femoral chordotonal organ.
Burns MD., J. Insect Physiol. 20(7), 1974
PMID: 4854433

AUTHOR UNKNOWN, 0
Organizing network action for locomotion: insights from studying insect walking.
Buschges A, Akay T, Gabriel JP, Schmidt J., Brain Res Rev 57(1), 2007
PMID: 17888515
Mechanosensory feedback in walking: From joint control to locomotor patterns.
Buschges A, Gruhn M., Advances in insect physiology. 34(), 2008
PMID: IND44011216
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Active touch in orthopteroid insects: behaviours, multisensory substrates and evolution.
Comer C, Baba Y., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969682
The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
Comer CM, Parks L, Halvorsen MB, Breese-Terteling A., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(2), 2003
PMID: 12607038
Task-level control of rapid wall following in the American cockroach.
Cowan NJ, Lee J, Full RJ., J. Exp. Biol. 209(Pt 9), 2006
PMID: 16621943
'Where' and 'what' in the whisker sensorimotor system.
Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E., Nat. Rev. Neurosci. 9(8), 2008
PMID: 18641667
The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.
Guschlbauer C, Scharstein H, Buschges A., J. Exp. Biol. 210(Pt 6), 2007
PMID: 17337721
Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis.
Harley CM, English BA, Ritzmann RE., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411540

Hofmann, J Exp Biol 114(), 1985
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
Hooper SL, Guschlbauer C, Blumel M, Rosenbaum P, Gruhn M, Akay T, Buschges A., J. Neurosci. 29(13), 2009
PMID: 19339606
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373

Kittmann, J Exp Biol 173(), 1992
Tactile efficiency of insect antennae with two hinge joints.
Krause AF, Durr V., Biol Cybern 91(3), 2004
PMID: 15378371
Active tactile sampling by an insect in a step-climbing paradigm.
Krause AF, Durr V., Front Behav Neurosci 6(), 2012
PMID: 22754513
Central drive and proprioceptive control of antennal movements in the walking stick insect.
Krause AF, Winkler A, Durr V., J. Physiol. Paris 107(1-2), 2012
PMID: 22728470
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Slanted joint axes of the stick insect antenna: an adaptation to tactile acuity.
Mujagic S, Krause AF, Durr V., Naturwissenschaften 94(4), 2006
PMID: 17180615
Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus.
Okada J, Akamine S., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 198(7), 2012
PMID: 22534774
Spatio-temporal patterns of antennal movements in the searching cockroach.
Okada J, Toh Y., J. Exp. Biol. 207(Pt 21), 2004
PMID: 15371477
Active tactile sensing for localization of objects by the cockroach antenna.
Okada J, Toh Y., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(7), 2006
PMID: 16450116
Active touch sensing.
Prescott TJ, Diamond ME, Wing AM., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969680
Deciding which way to go: how do insects alter movements to negotiate barriers?
Ritzmann RE, Harley CM, Daltorio KA, Tietz BR, Pollack AJ, Bender JA, Guo P, Horomanski AL, Kathman ND, Nieuwoudt C, Brown AE, Quinn RD., Front Neurosci 6(), 2012
PMID: 22783160
Multi-unit recording of antennal mechano-sensitive units in the central complex of the cockroach, Blaberus discoidalis.
Ritzmann RE, Ridgel AL, Pollack AJ., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(4), 2008
PMID: 18180927
Active tactile exploration for adaptive locomotion in the stick insect.
Schutz C, Durr V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1581), 2011
PMID: 21969681

AUTHOR UNKNOWN, 0
Gating of sensory responses of descending brain neurones during walking in crickets
StaudacherY E, k ., J. Exp. Biol. 201 (Pt 4)(), 1998
PMID: 9438831
Deep homology of arthropod central complex and vertebrate basal ganglia.
Strausfeld NJ, Hirth F., Science 340(6129), 2013
PMID: 23580521

AUTHOR UNKNOWN, 0
Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor.
Zeil J, Sandeman R, Sandeman D., J. Comp. Physiol. A 157(5), 1985
PMID: 3837102

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23926042
PubMed | Europe PMC

Suchen in

Google Scholar