Walknet, a bio-inspired controller for hexapod walking

Schilling M, Hoinville T, Schmitz J, Cruse H (2013)
Biological Cybernetics 107(4): 397-419.

Download
OA
Journal Article | Published | English
Abstract
Walknet comprises an artificial neural network that allows for the simulation of a considerable amount of behavioral data obtained from walking and standing stick insects. It has been tested by kinematic and dynamic simulations as well as on a number of six-legged robots. Over the years, various different expansions of this network have been provided leading to different versions of Walknet. This review summarizes the most important biological findings described by Walknet and how they can be simulated. Walknet shows how a number of properties observed in insects may emerge from a decentralized architecture. Examples are the continuum of so-called "gaits," coordination of up to 18 leg joints during stance when walking forward or backward over uneven surfaces and negotiation of curves, dealing with leg loss, as well as being able following motion trajectories without explicit precalculation. The different Walknet versions are compared to other approaches describing insect-inspired hexapod walking. Finally, we briefly address the ability of this decentralized reactive controller to form the basis for the simulation of higher-level cognitive faculties exceeding the capabilities of insects.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Schilling M, Hoinville T, Schmitz J, Cruse H. Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics. 2013;107(4):397-419.
Schilling, M., Hoinville, T., Schmitz, J., & Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4), 397-419.
Schilling, M., Hoinville, T., Schmitz, J., and Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics 107, 397-419.
Schilling, M., et al., 2013. Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4), p 397-419.
M. Schilling, et al., “Walknet, a bio-inspired controller for hexapod walking”, Biological Cybernetics, vol. 107, 2013, pp. 397-419.
Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics. 107, 397-419 (2013).
Schilling, Malte, Hoinville, Thierry, Schmitz, Josef, and Cruse, Holk. “Walknet, a bio-inspired controller for hexapod walking”. Biological Cybernetics 107.4 (2013): 397-419.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2014-08-29 10:20:21

This data publication is cited in the following publications:
This publication cites the following data publications:

11 Citations in Europe PMC

Data provided by Europe PubMed Central.

Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
Grinke E, Tetzlaff C, Worgotter F, Manoonpong P., Front Neurorobot 9(), 2015
PMID: 26528176
Novel plasticity rule can explain the development of sensorimotor intelligence.
Der R, Martius G., Proc. Natl. Acad. Sci. U.S.A. 112(45), 2015
PMID: 26504200
Walking and running in the desert ant Cataglyphis fortis.
Wahl V, Pfeffer SE, Wittlinger M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201(6), 2015
PMID: 25829304
Prediction-for-CompAction: navigation in social environments using generalized cognitive maps.
Villacorta-Atienza JA, Calvo C, Makarov VA., Biol Cybern 109(3), 2015
PMID: 25677525
Mental representation and motor imagery training.
Schack T, Essig K, Frank C, Koester D., Front Hum Neurosci 8(), 2014
PMID: 24904368
Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots.
Goldschmidt D, Worgotter F, Manoonpong P., Front Neurorobot 8(), 2014
PMID: 24523694
A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis.
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE., Biol Cybern 108(1), 2014
PMID: 24178847
A hexapod walker using a heterarchical architecture for action selection.
Schilling M, Paskarbeit J, Hoinville T, Huffmeier A, Schneider A, Schmitz J, Cruse H., Front Comput Neurosci 7(), 2013
PMID: 24062682

169 References

Data provided by Europe PubMed Central.


AUTHOR UNKNOWN, 0
Control of swing movement: influences of differently shaped substrate.
Schumm M, Cruse H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(10), 2006
PMID: 16830135
Self-organized adaptation of a simple neural circuit enables complex robot behaviour
Steingrube S, Timme M, Wörgötter F, Manoonpong P., 2010
The central complex and the genetic dissection of locomotor behaviour.
Strauss R., Curr. Opin. Neurobiol. 12(6), 2002
PMID: 12490252

AUTHOR UNKNOWN, 0
A neuromechanical model explaining forward and backward stepping in the stick insect.
Toth TI, Knops S, Daun-Gruhn S., J. Neurophysiol. 107(12), 2012
PMID: 22402652
Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse
von E., 1939
Über relative Koordination bei Arthropoden
von E., 1943
Neural control of a modular multi-legged walking machine: simulation and hardware
von A, Hild M, Siedel T, Patel V, Pasemann F., 2012
Reflex-oscillations in evolved single leg neurocontrollers for walking machines
von A, Pasemann F., 2007

AUTHOR UNKNOWN, 0
Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen
Wendler G., 1964

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Insect walking.
Wilson DM., Annu. Rev. Entomol. 11(), 1966
PMID: 5321575
Perspectives and problems in motor learning.
Wolpert DM, Ghahramani Z, Flanagan JR., Trends Cogn. Sci. (Regul. Ed.) 5(11), 2001
PMID: 11684481
Inter-leg coordination in the control of walking speed in Drosophila.
Wosnitza A, Bockemuhl T, Dubbert M, Scholz H, Buschges A., J. Exp. Biol. 216(Pt 3), 2013
PMID: 23038731

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23824506
PubMed | Europe PMC

Search this title in

Google Scholar