Soft Competitive Learning for large data sets

Schleif F-M, Zhu X, Hammer B (2012)
In: Proceedings of MCSD 2012. 141-151.

Conference Paper | Published | English

No fulltext has been uploaded

Abstract
Soft competitive learning is an advanced k-means like clustering approach overcoming some severe drawbacks of k-means, like initialization dependence and sticking to local minima. It achieves lower distortion error than k-means and has shown very good performance in the clustering of complex data sets, using various metrics or kernels. While very effective, it does not scale for large data sets which is even more severe in case of kernels, due to a dense prototype model. In this paper, we propose a novel soft-competitive learning algorithm using core-sets, significantly accelerating the original method in practice with natural sparsity. It effectively deals with very large data sets up to multiple million points. Our method provides also an alternative fast kernelization of soft-competitive learning. In contrast to many other clustering methods the obtained model is based on only few prototypes and shows natural sparsity. It is the first natural sparse kernelized soft competitive learning approach. Numerical experiments on synthetical and benchmark data sets show the efficiency of the proposed method.
Publishing Year
PUB-ID

Cite this

Schleif F-M, Zhu X, Hammer B. Soft Competitive Learning for large data sets. In: Proceedings of MCSD 2012. 2012: 141-151.
Schleif, F. - M., Zhu, X., & Hammer, B. (2012). Soft Competitive Learning for large data sets. Proceedings of MCSD 2012, 141-151.
Schleif, F. - M., Zhu, X., and Hammer, B. (2012). “Soft Competitive Learning for large data sets” in Proceedings of MCSD 2012 141-151.
Schleif, F.-M., Zhu, X., & Hammer, B., 2012. Soft Competitive Learning for large data sets. In Proceedings of MCSD 2012. pp. 141-151.
F.-M. Schleif, X. Zhu, and B. Hammer, “Soft Competitive Learning for large data sets”, Proceedings of MCSD 2012, 2012, pp.141-151.
Schleif, F.-M., Zhu, X., Hammer, B.: Soft Competitive Learning for large data sets. Proceedings of MCSD 2012. p. 141-151. (2012).
Schleif, Frank-Michael, Zhu, Xibin, and Hammer, Barbara. “Soft Competitive Learning for large data sets”. Proceedings of MCSD 2012. 2012. 141-151.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar
ISBN Search