The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism

Wendler S, Hürtgen D, Kalinowski J, Klein A, Niehaus K, Schulte F, Schwientek P, Wehlmann H, Wehmeier UF, Pühler A (2013)
Journal of Biotechnology 167(2): 178-189.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
The pseudotetrasaccharide acarbose is a medically relevant secondary metabolite produced by strains of the genera Actinoplanes and Streptomyces. In this study gene products involved in acarbose metabolism were identified by analyzing the cytosolic and extracellular proteome of Actinoplanes sp. SE50/110 cultures grown in a high-maltose minimal medium. The analysis by 2D protein gel electrophoresis of cytosolic proteins of Actinoplanes sp. SE50/110 resulted in 318 protein spots and 162 identified proteins. Nine of those were acarbose cluster proteins (Acb-proteins), namely AcbB, AcbD, AcbE, AcbK, AcbL, AcbN, AcbR, AcbV and AcbZ. The analysis of proteins in the extracellular space of Actinoplanes sp. SE50/110 cultures resulted in about 100 protein spots and 22 identified proteins. The identifications included the three acarbose gene cluster proteins AcbD, AcbE and AcbZ. After their identification, proteins were classified into functional groups. The dominant functional groups were the carbohydrate binding, carbohydrate cleavage and carbohydrate transport proteins. The other functional groups included protein cleavage, amino acid degradation, nucleic acid cleavage and a number of functionally uncharacterized proteins. In addition, signal peptide structures of extracellularly found proteins were analyzed. Of the 22 detected proteins 19 contained signal peptides, while 2 had N-terminal transmembrane helices explaining their localization. The only protein having neither of them was enolase. Under the conditions applied, the secretome of Actinoplanes sp. SE50/110 was dominated by seven proteins involved in carbohydrate metabolism (PulA, AcbE, AcbD, MalE, AglE, CbpA and Cgt). Of special interest were the identified extracellular pullulanase PulA and the two solute-binding proteins MalE and AglE. The identifications suggest that Actinoplanes sp. SE50/110 has two maltose/maltodextrin import systems. We postulate the identified MalEFG transport system of Actinoplanes sp. SE50/100 as the missing acarbose-metabolite importer and present a model of acarbose metabolism that is extended by the newly identified gene products.
Publishing Year
ISSN
PUB-ID

Cite this

Wendler S, Hürtgen D, Kalinowski J, et al. The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism. Journal of Biotechnology. 2013;167(2):178-189.
Wendler, S., Hürtgen, D., Kalinowski, J., Klein, A., Niehaus, K., Schulte, F., Schwientek, P., et al. (2013). The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism. Journal of Biotechnology, 167(2), 178-189.
Wendler, S., Hürtgen, D., Kalinowski, J., Klein, A., Niehaus, K., Schulte, F., Schwientek, P., Wehlmann, H., Wehmeier, U. F., and Pühler, A. (2013). The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism. Journal of Biotechnology 167, 178-189.
Wendler, S., et al., 2013. The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism. Journal of Biotechnology, 167(2), p 178-189.
S. Wendler, et al., “The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism”, Journal of Biotechnology, vol. 167, 2013, pp. 178-189.
Wendler, S., Hürtgen, D., Kalinowski, J., Klein, A., Niehaus, K., Schulte, F., Schwientek, P., Wehlmann, H., Wehmeier, U.F., Pühler, A.: The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism. Journal of Biotechnology. 167, 178-189 (2013).
Wendler, Sergej, Hürtgen, Daniel, Kalinowski, Jörn, Klein, Andreas, Niehaus, Karsten, Schulte, Fabian, Schwientek, Patrick, Wehlmann, Hermann, Wehmeier, Udo F., and Pühler, Alfred. “The cytosolic and extracellular proteomes of Actinoplanes sp. SE50/110 led to the identification of gene products involved in acarbose metabolism”. Journal of Biotechnology 167.2 (2013): 178-189.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Proteome signatures--how are they obtained and what do they teach us?
da Costa JP, Carvalhais V, Ferreira R, Amado F, Vilanova M, Cerca N, Vitorino R., Appl. Microbiol. Biotechnol. 99(18), 2015
PMID: 26205520
Comprehensive proteome analysis of Actinoplanes sp. SE50/110 highlighting the location of proteins encoded by the acarbose and the pyochelin biosynthesis gene cluster.
Wendler S, Otto A, Ortseifen V, Bonn F, Neshat A, Schneiker-Bekel S, Walter F, Wolf T, Zemke T, Wehmeier UF, Hecker M, Kalinowski J, Becher D, Puhler A., J Proteomics 125(), 2015
PMID: 25896738
Carbon source dependent biosynthesis of acarviose metabolites in Actinoplanes sp. SE50/110.
Wendler S, Ortseifen V, Persicke M, Klein A, Neshat A, Niehaus K, Schneiker-Bekel S, Walter F, Wehmeier UF, Kalinowski J, Puhler A., J. Biotechnol. 191(), 2014
PMID: 25169663
Improving the genome annotation of the acarbose producer Actinoplanes sp. SE50/110 by sequencing enriched 5'-ends of primary transcripts.
Schwientek P, Neshat A, Kalinowski J, Klein A, Ruckert C, Schneiker-Bekel S, Wendler S, Stoye J, Puhler A., J. Biotechnol. 190(), 2014
PMID: 24642337

50 References

Data provided by Europe PubMed Central.

Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose.
Licht A, Bulut H, Scheffel F, Daumke O, Wehmeier UF, Saenger W, Schneider E, Vahedi-Faridi A., J. Mol. Biol. 406(1), 2011
PMID: 21168419

AUTHOR UNKNOWN, 0
Multifunctional alpha-enolase: its role in diseases
Pancholi, Cellular and Molecular Life Sciences: CMLS 58(7), 2001
Members of the genus Actinoplanes and their antibiotics.
Parenti F, Coronelli C., Annu. Rev. Microbiol. 33(), 1979
PMID: 386928
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS., Electrophoresis 20(18), 1999
PMID: 10612281
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Petersen TN, Brunak S, von Heijne G, Nielsen H., Nat. Methods 8(10), 2011
PMID: 21959131
The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA.O: identification isolation and characterization
Rockser, Journal of Biotechnology 140(1–2), 2009
alpha-Glucosidase inhibitors. New complex oligosaccharides of microbial origin.
Schmidt DD, Frommer W, Junge B, Muller L, Wingender W, Truscheit E, Schafer D., Naturwissenschaften 64(10), 1977
PMID: 337162

AUTHOR UNKNOWN, 0
Sequencing of high G+C microbial genomes using the ultrafast pyrosequencing technology.
Schwientek P, Szczepanowski R, Ruckert C, Stoye J, Puhler A., J. Biotechnol. 155(1), 2011
PMID: 21536083
Lipoproteins of gram-positive bacteria.
Sutcliffe IC, Russell RR., J. Bacteriol. 177(5), 1995
PMID: 7868582
Cell wall composition in relation to the taxonomy of some Actinoplanaceae.
Szaniszlo PJ, Gooder H., J. Bacteriol. 94(6), 1967
PMID: 6074406
Chemistry and biochemistry of microbial α-glucosidase inhibitors
Truscheit, Angewandte Chemie International Edition in English 20(9), 1981
[Classification of pullulanase as an exoenzyme by means of gas chromatography]
Wallenfels K, Rached IR, Hucho F., Eur. J. Biochem. 7(2), 1969
PMID: 5765736
Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100.
Watt SA, Wilke A, Patschkowski T, Niehaus K., Proteomics 5(1), 2005
PMID: 15619296
Biotechnology and molecular biology of the alpha-glucosidase inhibitor acarbose.
Wehmeier UF, Piepersberg W., Appl. Microbiol. Biotechnol. 63(6), 2004
PMID: 14669056
The biosynthesis and metabolism of Acarbose in Actinoplanes sp. SE 50/110: a progress report
Wehmeier, Biocatalysis and Biotransformation 21(4–5), 2003
The malEFG gene cluster of Streptomyces coelicolor A3(2): characterization, disruption and transcriptional analysis
van, Molecular and General Genetics: MGG 254(5), 1997
Crytal structures of periplasmic solute-binding proteins in ABC transport complexes illuminate their function
Wilkinson, 2003
Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway.
Zhang CS, Stratmann A, Block O, Bruckner R, Podeschwa M, Altenbach HJ, Wehmeier UF, Piepersberg W., J. Biol. Chem. 277(25), 2002
PMID: 11937512

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22944206
PubMed | Europe PMC

Search this title in

Google Scholar