Insights into the phylogeny and coding potential of microbial dark matter

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, et al. (2013)
Nature 499(7459): 431-437.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.
Erscheinungsjahr
Zeitschriftentitel
Nature
Band
499
Zeitschriftennummer
7459
Seite
431-437
ISSN
eISSN
PUB-ID

Zitieren

Rinke C, Schwientek P, Sczyrba A, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499(7459):431-437.
Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. - F., Darling, A., et al. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431-437. doi:10.1038/nature12352
Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J. - F., Darling, A., Malfatti, S., Swan, B. K., Gies, E. A., et al. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431-437.
Rinke, C., et al., 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), p 431-437.
C. Rinke, et al., “Insights into the phylogeny and coding potential of microbial dark matter”, Nature, vol. 499, 2013, pp. 431-437.
Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.-F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., Dodsworth, J.A., Hedlund, B.P., Tsiamis, G., Sievert, S.M., Liu, W.-T., Eisen, J.A., Hallam, S.J., Kyrpides, N.C., Stepanauskas, R., Rubin, E.M., Hugenholtz, P., Woyke, T.: Insights into the phylogeny and coding potential of microbial dark matter. Nature. 499, 431-437 (2013).
Rinke, Christian, Schwientek, Patrick, Sczyrba, Alexander, Ivanova, Natalia N, Anderson, Iain J, Cheng, Jan-Fang, Darling, Aaron, Malfatti, Stephanie, Swan, Brandon K, Gies, Esther A, Dodsworth, Jeremy A, Hedlund, Brian P, Tsiamis, George, Sievert, Stefan M, Liu, Wen-Tso, Eisen, Jonathan A, Hallam, Steven J, Kyrpides, Nikos C, Stepanauskas, Ramunas, Rubin, Edward M, Hugenholtz, Philip, and Woyke, Tanja. “Insights into the phylogeny and coding potential of microbial dark matter”. Nature 499.7459 (2013): 431-437.

521 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Metagenomics and novel gene discovery: promise and potential for novel therapeutics.
Culligan EP, Sleator RD, Marchesi JR, Hill C., Virulence 5(3), 2014
PMID: 24317337
Syntrophic biodegradation of hydrocarbon contaminants.
Gieg LM, Fowler SJ, Berdugo-Clavijo C., Curr Opin Biotechnol 27(), 2014
PMID: 24863893
Intestinal microbiome and digoxin inactivation: meal plan for digoxin users?
Lu L, Wu Y, Zuo L, Luo X, Large PJ., World J Microbiol Biotechnol 30(3), 2014
PMID: 24105082
IMG/M 4 version of the integrated metagenome comparative analysis system.
Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC., Nucleic Acids Res 42(database issue), 2014
PMID: 24136997
IMG 4 version of the integrated microbial genomes comparative analysis system.
Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC., Nucleic Acids Res 42(database issue), 2014
PMID: 24165883
MetaRef: a pan-genomic database for comparative and community microbial genomics.
Huang K, Brady A, Mahurkar A, White O, Gevers D, Huttenhower C, Segata N., Nucleic Acids Res 42(database issue), 2014
PMID: 24203705
Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution.
Schönknecht G, Weber AP, Lercher MJ., Bioessays 36(1), 2014
PMID: 24323918
Being Aquifex aeolicus: Untangling a hyperthermophile's checkered past.
Eveleigh RJ, Meehan CJ, Archibald JM, Beiko RG., Genome Biol Evol 5(12), 2013
PMID: 24281050
The PVC superphylum: exceptions to the bacterial definition?
Fuerst JA., Antonie Van Leeuwenhoek 104(4), 2013
PMID: 23912444
Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs.
Hedlund BP, Paraiso JJ, Williams AJ, Huang Q, Wei Y, Dijkstra P, Hungate BA, Dong H, Zhang CL., Front Microbiol 4(), 2013
PMID: 23964271
Sequencing the human microbiome in health and disease.
Cox MJ, Cookson WO, Moffatt MF., Hum Mol Genet 22(r1), 2013
PMID: 23943792
The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs.
Paraiso JJ, Williams AJ, Huang Q, Wei Y, Dijkstra P, Hungate BA, Dong H, Hedlund BP, Zhang CL., Front Microbiol 4(), 2013
PMID: 24009605
Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla.
Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, Thomas BC, Banfield JF., MBio 4(5), 2013
PMID: 24149512
Microbial diversity in the era of omic technologies.
Nikolaki S, Tsiamis G., Biomed Res Int 2013(), 2013
PMID: 24260747
Microbiology. Genomes from metagenomics.
Sharon I, Banfield JF., Science 342(6162), 2013
PMID: 24288324
Genomes of "Spiribacter", a streamlined, successful halophilic bacterium.
López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos Á, Copa-Patiño JL, Soliveri J, Sanchez-Porro C, Ventosa A, Rodriguez-Valera F., BMC Genomics 14(), 2013
PMID: 24225341
Close encounters of the third domain: the emerging genomic view of archaeal diversity and evolution.
Spang A, Martijn J, Saw JH, Lind AE, Guy L, Ettema TJ., Archaea 2013(), 2013
PMID: 24348093
Using phage display selected antibodies to dissect microbiomes for complete de novo genome sequencing of low abundance microbes.
Close DW, Ferrara F, Dichosa AE, Kumar S, Daughton AR, Daligault HE, Reitenga KG, Velappan N, Sanchez TC, Iyer S, Kiss C, Han CS, Bradbury AR., BMC Microbiol 13(), 2013
PMID: 24279426

50 References

Daten bereitgestellt von Europe PubMed Central.

A major clade of prokaryotes with ancient adaptations to life on land.
Battistuzzi FU, Hedges SB., Mol. Biol. Evol. 26(2), 2009
PMID: 18988685
Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10.
Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng XY, Hanada S, Mori K, Kamagata Y., Int. J. Syst. Evol. Microbiol. 61(Pt 6), 2011
PMID: 20622056
Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes.
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH., Nat. Biotechnol. 31(6), 2013
PMID: 23707974
Novel major bacterial candidate division within a municipal anaerobic sludge digester.
Chouari R, Le Paslier D, Dauga C, Daegelen P, Weissenbach J, Sghir A., Appl. Environ. Microbiol. 71(4), 2005
PMID: 15812049
New perspective on uncultured bacterial phylogenetic division OP11.
Harris JK, Kelley ST, Pace NR., Appl. Environ. Microbiol. 70(2), 2004
PMID: 14766563
Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat.
Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR., Appl. Environ. Microbiol. 72(5), 2006
PMID: 16672518
Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla.
Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, Wilkins MJ, Hettich RL, Lipton MS, Williams KH, Long PE, Banfield JF., Science 337(6102), 2012
PMID: 23019650
Enigmatic, ultrasmall, uncultivated Archaea.
Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, Verberkmoes NC, Hettich RL, Banfield JF., Proc. Natl. Acad. Sci. U.S.A. 107(19), 2010
PMID: 20421484
De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities.
Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE., ISME J 6(1), 2012
PMID: 21716304
Genetic diversity of archaea in deep-sea hydrothermal vent environments.
Takai K, Horikoshi K., Genetics 152(4), 1999
PMID: 10430559
Archaeal diversity in waters from deep South African gold mines.
Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK., Appl. Environ. Microbiol. 67(12), 2001
PMID: 11722932
The archaeal 'TACK' superphylum and the origin of eukaryotes.
Guy L, Ettema TJ., Trends Microbiol. 19(12), 2011
PMID: 22018741
Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes.
Lake JA, Henderson E, Oakes M, Clark MW., Proc. Natl. Acad. Sci. U.S.A. 81(12), 1984
PMID: 6587394
A congruent phylogenomic signal places eukaryotes within the Archaea.
Williams TA, Foster PG, Nye TM, Cox CJ, Embley TM., Proc. Biol. Sci. 279(1749), 2012
PMID: 23097517
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota.
Campbell JH, O'Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Soll D, Podar M., Proc. Natl. Acad. Sci. U.S.A. 110(14), 2013
PMID: 23509275
Selenocysteine in proteins-properties and biotechnological use.
Johansson L, Gafvelin G, Arner ES., Biochim. Biophys. Acta 1726(1), 2005
PMID: 15967579
UGA is read as tryptophan in Mycoplasma capricolum.
Yamao F, Muto A, Kawauchi Y, Iwami M, Iwagami S, Azumi Y, Osawa S., Proc. Natl. Acad. Sci. U.S.A. 82(8), 1985
PMID: 3887399
Structural biology of the purine biosynthetic pathway.
Zhang Y, Morar M, Ealick SE., Cell. Mol. Life Sci. 65(23), 2008
PMID: 18712276
The sigma70 family of sigma factors.
Paget MS, Helmann JD., Genome Biol. 4(1), 2003
PMID: 12540296
Lytic transglycosylases: bacterial space-making autolysins.
Scheurwater E, Reid CW, Clarke AJ., Int. J. Biochem. Cell Biol. 40(4), 2008
PMID: 17468031

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23851394
PubMed | Europe PMC

Suchen in

Google Scholar