MeltDB 2.0 - Advances of the metabolomics software system

Kessler N, Bonte A, Langenkämper G, Niehaus K, Goesmann A, Nattkemper TW (2013)
Bioinformatics 29(19): 2452-2459.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Abstract
Motivation: The research area metabolomics achieved tremendous popularity and development in the last couple of years. Due to its unique interdisciplinarity it requires to combine knowledge from various scientific disciplines. Advances in the high-throughput technology and the consequently growing quality and quantity of data put new demands on applied analytical and computational methods. Exploration of finally generated and analyzed datasets furthermore relies on powerful tools for data mining and visualization. Results: To cover and keep up with these requirements, we have created MeltDB 2.0, a next generation web application adressing storage, sharing, standardization, integration and analysis of metabolomics experiments. New features improve both, efficiency and effectivity of the entire processing pipeline of chromatographic raw data from pre-processing to the derivation of new bioloigcal knowledge. Firstly, the generation of high quality metabolic data sets has been vastly simplified. Secondly, the new statistics tool box allows to investigate these data sets according to a wide spectrum of scientific and explorative questions. Availability: The system is publicly available at https://meltdb.cebitec.unibielefeld. de. A login is required but freely available.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kessler N, Bonte A, Langenkämper G, Niehaus K, Goesmann A, Nattkemper TW. MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics. 2013;29(19):2452-2459.
Kessler, N., Bonte, A., Langenkämper, G., Niehaus, K., Goesmann, A., & Nattkemper, T. W. (2013). MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics, 29(19), 2452-2459. doi:10.1093/bioinformatics/btt414
Kessler, N., Bonte, A., Langenkämper, G., Niehaus, K., Goesmann, A., and Nattkemper, T. W. (2013). MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics 29, 2452-2459.
Kessler, N., et al., 2013. MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics, 29(19), p 2452-2459.
N. Kessler, et al., “MeltDB 2.0 - Advances of the metabolomics software system”, Bioinformatics, vol. 29, 2013, pp. 2452-2459.
Kessler, N., Bonte, A., Langenkämper, G., Niehaus, K., Goesmann, A., Nattkemper, T.W.: MeltDB 2.0 - Advances of the metabolomics software system. Bioinformatics. 29, 2452-2459 (2013).
Kessler, Nikolas, Bonte, Anja, Langenkämper, Georg, Niehaus, Karsten, Goesmann, Alexander, and Nattkemper, Tim Wilhelm. “MeltDB 2.0 - Advances of the metabolomics software system”. Bioinformatics 29.19 (2013): 2452-2459.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil.
Wagner C, Bonte A, Brühl L, Niehaus K, Bednarz H, Matthäus B., J Sci Food Agric 98(6), 2018
PMID: 28960362
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data.
Wei R, Wang J, Su M, Jia E, Chen S, Chen T, Ni Y., Sci Rep 8(1), 2018
PMID: 29330539
Mixture model normalization for non-targeted gas chromatography/mass spectrometry metabolomics data.
Reisetter AC, Muehlbauer MJ, Bain JR, Nodzenski M, Stevens RD, Ilkayeva O, Metzger BE, Newgard CB, Lowe WL, Scholtens DM., BMC Bioinformatics 18(1), 2017
PMID: 28153035
Network Marker Selection for Untargeted LC-MS Metabolomics Data.
Cai Q, Alvarez JA, Kang J, Yu T., J Proteome Res 16(3), 2017
PMID: 28168878
Navigating freely-available software tools for metabolomics analysis.
Spicer R, Salek RM, Moreno P, Cañueto D, Steinbeck C., Metabolomics 13(9), 2017
PMID: 28890673
Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris.
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ., Microbiology 163(8), 2017
PMID: 28795660
Null diffusion-based enrichment for metabolomics data.
Picart-Armada S, Fernández-Albert F, Vinaixa M, Rodríguez MA, Aivio S, Stracker TH, Yanes O, Perera-Lluna A., PLoS One 12(12), 2017
PMID: 29211807
MarVis-Pathway: integrative and exploratory pathway analysis of non-targeted metabolomics data.
Kaever A, Landesfeind M, Feussner K, Mosblech A, Heilmann I, Morgenstern B, Feussner I, Meinicke P., Metabolomics 11(3), 2015
PMID: 25972773
Learning to Classify Organic and Conventional Wheat - A Machine Learning Driven Approach Using the MeltDB 2.0 Metabolomics Analysis Platform.
Kessler N, Bonte A, Albaum SP, Mäder P, Messmer M, Goesmann A, Niehaus K, Langenkämper G, Nattkemper TW., Front Bioeng Biotechnol 3(), 2015
PMID: 25853128
Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles.
Hauschild AC, Frisch T, Baumbach JI, Baumbach J., Metabolites 5(2), 2015
PMID: 26065494
metaMS: an open-source pipeline for GC-MS-based untargeted metabolomics.
Wehrens R, Weingart G, Mattivi F., J Chromatogr B Analyt Technol Biomed Life Sci 966(), 2014
PMID: 24656939
Method validation strategies involved in non-targeted metabolomics.
Naz S, Vallejo M, García A, Barbas C., J Chromatogr A 1353(), 2014
PMID: 24811151
Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis.
Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ., Mol Biosyst 10(10), 2014
PMID: 25072918

27 References

Data provided by Europe PubMed Central.

Highly sensitive feature detection for high resolution LC/MS.
Tautenhahn R, Bottcher C, Neumann S., BMC Bioinformatics 9(), 2008
PMID: 19040729
MetaboAnalyst: a web server for metabolomic data analysis and interpretation.
Xia J, Psychogios N, Young N, Wishart DS., Nucleic Acids Res. 37(Web Server issue), 2009
PMID: 19429898

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23918246
PubMed | Europe PMC

Search this title in

Google Scholar