Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury

Yoo M, Khaled M, Gibbs KM, Kim J, Kowalewski B, Dierks T, Schachner M (2013)
Plos One 8(3): e57415.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated.
Erscheinungsjahr
Zeitschriftentitel
Plos One
Band
8
Zeitschriftennummer
3
Seite
e57415
ISSN
eISSN
PUB-ID

Zitieren

Yoo M, Khaled M, Gibbs KM, et al. Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury. Plos One. 2013;8(3):e57415.
Yoo, M., Khaled, M., Gibbs, K. M., Kim, J., Kowalewski, B., Dierks, T., & Schachner, M. (2013). Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury. Plos One, 8(3), e57415. doi:10.1371/journal.pone.0057415
Yoo, M., Khaled, M., Gibbs, K. M., Kim, J., Kowalewski, B., Dierks, T., and Schachner, M. (2013). Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury. Plos One 8, e57415.
Yoo, M., et al., 2013. Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury. Plos One, 8(3), p e57415.
M. Yoo, et al., “Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury”, Plos One, vol. 8, 2013, pp. e57415.
Yoo, M., Khaled, M., Gibbs, K.M., Kim, J., Kowalewski, B., Dierks, T., Schachner, M.: Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury. Plos One. 8, e57415 (2013).
Yoo, Myungsik, Khaled, Muntasir, Gibbs, Kurt M., Kim, Jonghun, Kowalewski, Björn, Dierks, Thomas, and Schachner, Melitta. “Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury”. Plos One 8.3 (2013): e57415.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Expression and Distribution of Arylsulfatase B are Closely Associated with Neuron Death in SOD1 G93A Transgenic Mice.
Zhang J, Liang H, Zhu L, Gan W, Tang C, Li J, Xu R., Mol Neurobiol 55(2), 2018
PMID: 28124772
Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury.
Kajstura TJ, Dougherty SE, Linden DJ., J Neurosci Res 96(4), 2018
PMID: 28485037
Extracellular matrix and traumatic brain injury.
George N, Geller HM., J Neurosci Res 96(4), 2018
PMID: 29344975
Targeting Chondroitin Sulfate Glycosaminoglycans to Treat Cardiac Fibrosis in Pathological Remodeling.
Zhao RR, Ackers-Johnson M, Stenzig J, Chen C, Ding T, Zhou Y, Wang P, Ng SL, Li PY, Teo G, Rudd PM, Fawcett JW, Foo RSY., Circulation 137(23), 2018
PMID: 29371215
The Biology of Regeneration Failure and Success After Spinal Cord Injury.
Tran AP, Warren PM, Silver J., Physiol Rev 98(2), 2018
PMID: 29513146
Identification of a critical sulfation in chondroitin that inhibits axonal regeneration.
Pearson CS, Mencio CP, Barber AC, Martin KR, Geller HM., Elife 7(), 2018
PMID: 29762123
The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity.
de Winter F, Kwok JC, Fawcett JW, Vo TT, Carulli D, Verhaagen J., Neural Plast 2016(), 2016
PMID: 27057361
Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury.
Jin Y, Dougherty SE, Wood K, Sun L, Cudmore RH, Abdalla A, Kannan G, Pletnikov M, Hashemi P, Linden DJ., Neuron 91(4), 2016
PMID: 27499084
Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury.
Bhattacharyya S, Zhang X, Feferman L, Johnson D, Tortella FC, Guizzetti M, Tobacman JK., J Neurochem 134(4), 2015
PMID: 25943740
Arylsulfatase B regulates versican expression by galectin-3 and AP-1 mediated transcriptional effects.
Bhattacharyya S, Feferman L, Tobacman JK., Oncogene 33(47), 2014
PMID: 24240681
Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol.
Zhang X, Bhattacharyya S, Kusumo H, Goodlett CR, Tobacman JK, Guizzetti M., Glia 62(2), 2014
PMID: 24311516
Spinal cord regeneration.
Young W., Cell Transplant 23(4-5), 2014
PMID: 24816452
Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair.
Burnside ER, Bradbury EJ., Neuropathol Appl Neurobiol 40(1), 2014
PMID: 24438519
Inhibition of NADPH oxidase activation in oligodendrocytes reduces cytotoxicity following trauma.
Johnstone JT, Morton PD, Jayakumar AR, Johnstone AL, Gao H, Bracchi-Ricard V, Pearse DD, Norenberg MD, Bethea JR., PLoS One 8(11), 2013
PMID: 24260524

75 References

Daten bereitgestellt von Europe PubMed Central.

The glial scar and central nervous system repair.
Fawcett JW, Asher RA., Brain Res. Bull. 49(6), 1999
PMID: 10483914
Plasticity of motor systems after incomplete spinal cord injury.
Raineteau O, Schwab ME., Nat. Rev. Neurosci. 2(4), 2001
PMID: 11283749

AUTHOR UNKNOWN, 0
Neurocan is upregulated in injured brain and in cytokine-treated astrocytes.
Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW., J. Neurosci. 20(7), 2000
PMID: 10729323
Chondroitin sulfate as a regulator of neuronal patterning in the retina.
Brittis PA, Canning DR, Silver J., Science 255(5045), 1992
PMID: 1738848
Inhibitory molecules in development and regeneration.
Silver J., J. Neurol. 242(1 Suppl 1), 1994
PMID: 7535345
Sulfated proteoglycans as modulators of neuronal migration and axonal decussation in the developing midbrain.
Cavalcante LA, Garcia-Abreu J, Mendes FA, Moura Neto V, Silva LC, Onofre G, Weissmuller G, Carvalho SL., Braz. J. Med. Biol. Res. 36(8), 2003
PMID: 12886453
Reactivation of ocular dominance plasticity in the adult visual cortex.
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L., Science 298(5596), 2002
PMID: 12424383
Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans.
Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW., J. Biol. Chem. 281(26), 2006
PMID: 16644727
Neurite outgrowth over resting and reactive astrocytes.
Bovolenta P, Wandosell F, Nieto-Sampedro M., Restor. Neurol. Neurosci. 2(4), 1991
PMID: 21551606
Chondroitin sulphate proteoglycans in the CNS injury response.
Morgenstern DA, Asher RA, Fawcett JW., Prog. Brain Res. 137(), 2002
PMID: 12440375
A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration.
Mukhopadhyay G, Doherty P, Walsh FS, Crocker PR, Filbin MT., Neuron 13(3), 1994
PMID: 7522484
Chondroitin-4-sulfation negatively regulates axonal guidance and growth.
Wang H, Katagiri Y, McCann TE, Unsworth E, Goldsmith P, Yu ZX, Tan F, Santiago L, Mills EM, Wang Y, Symes AJ, Geller HM., J. Cell. Sci. 121(Pt 18), 2008
PMID: 18768934
Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia.
Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, ten Dam GB, Furukawa Y, Mikami T, Sugahara K, Toida T, Geller HM, Fawcett JW., Eur. J. Neurosci. 21(2), 2005
PMID: 15673437
Chondroitin sulfate-binding peptides block chondroitin 6-sulfate inhibition of cortical neurite growth.
Butterfield KC, Conovaloff A, Caplan M, Panitch A., Neurosci. Lett. 478(2), 2010
PMID: 20450957
6-Sulphated chondroitins have a positive influence on axonal regeneration.
Lin R, Rosahl TW, Whiting PJ, Fawcett JW, Kwok JC., PLoS ONE 6(7), 2011
PMID: 21747937
Upregulation of chondroitin 6-sulphotransferase-1 facilitates Schwann cell migration during axonal growth.
Liu J, Chau CH, Liu H, Jang BR, Li X, Chan YS, Chan YS, Shum DK., J. Cell. Sci. 119(Pt 5), 2006
PMID: 16495484
CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension.
Gilbert RJ, McKeon RJ, Darr A, Calabro A, Hascall VC, Bellamkonda RV., Mol. Cell. Neurosci. 29(4), 2005
PMID: 15936953
Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification.
Prabhakar V, Capila I, Bosques CJ, Pojasek K, Sasisekharan R., Biochem. J. 386(Pt 1), 2005
PMID: 15691229
Chondroitinase ABC promotes functional recovery after spinal cord injury.
Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB., Nature 416(6881), 2002
PMID: 11948352
Therapeutic time window for the application of chondroitinase ABC after spinal cord injury.
Garcia-Alias G, Lin R, Akrimi SF, Story D, Bradbury EJ, Fawcett JW., Exp. Neurol. 210(2), 2007
PMID: 18158149
Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study.
Vink R, McIntosh TK, Weiner MW, Faden AI., J. Cereb. Blood Flow Metab. 7(5), 1987
PMID: 3654796
Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels.
Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP., Cell 118(6), 2004
PMID: 15369669
Two distinct chondroitin sulfate ABC lyases. An endoeliminase yielding tetrasaccharides and an exoeliminase preferentially acting on oligosaccharides.
Hamai A, Hashimoto N, Mochizuki H, Kato F, Makiguchi Y, Horie K, Suzuki S., J. Biol. Chem. 272(14), 1997
PMID: 9083041
Recombinant expression, purification, and biochemical characterization of chondroitinase ABC II from Proteus vulgaris.
Prabhakar V, Capila I, Soundararajan V, Raman R, Sasisekharan R., J. Biol. Chem. 284(2), 2008
PMID: 18849565
Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury.
Lee H, McKeon RJ, Bellamkonda RV., Proc. Natl. Acad. Sci. U.S.A. 107(8), 2009
PMID: 19884507
Intrathecal administration of recombinant human N-acetylgalactosamine 4-sulfatase to a MPS VI patient with pachymeningitis cervicalis.
Munoz-Rojas MV, Horovitz DD, Jardim LB, Raymundo M, Llerena JC Jr, de Magalhaes Tde S, Vieira TA, Costa R, Kakkis E, Giugliani R., Mol. Genet. Metab. 99(4), 2009
PMID: 20036175
Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome).
Harmatz P, Whitley CB, Waber L, Pais R, Steiner R, Plecko B, Kaplan P, Simon J, Butensky E, Hopwood JJ., J. Pediatr. 144(5), 2004
PMID: 15126989
Cell-surface arylsulfatase A and B on sinusoidal endothelial cells, hepatocytes, and Kupffer cells in mammalian livers.
Mitsunaga-Nakatsubo K, Kusunoki S, Kawakami H, Akasaka K, Akimoto Y., Med Mol Morphol 42(2), 2009
PMID: 19536613
Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord.
Caggiano AO, Zimber MP, Ganguly A, Blight AR, Gruskin EA., J. Neurotrauma 22(2), 2005
PMID: 15716629
Chondroitinase ABC promotes axonal re-growth and behavior recovery in spinal cord injury.
Huang WC, Kuo WC, Cherng JH, Hsu SH, Chen PR, Huang SH, Huang MC, Liu JC, Cheng H., Biochem. Biophys. Res. Commun. 349(3), 2006
PMID: 16965762
Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice.
Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM., J. Comp. Neurol. 520(15), 2012
PMID: 22628090
Arylsulphatase B, an exo-sulphatase for chondroitin 4-sulphate tetrasaccharide.
Gorham SD, Cantz M., Hoppe-Seyler's Z. Physiol. Chem. 359(12), 1978
PMID: 738706
Correction of human mucopolysaccharidosis type-VI fibroblasts with recombinant N-acetylgalactosamine-4-sulphatase
AUTHOR UNKNOWN, 1992
Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-beta after vascular damage.
Schachtrup C, Ryu JK, Helmrick MJ, Vagena E, Galanakis DK, Degen JL, Margolis RU, Akassoglou K., J. Neurosci. 30(17), 2010
PMID: 20427645
Smad proteins differentially regulate transforming growth factor-β-mediated induction of chondroitin sulfate proteoglycans.
Susarla BT, Laing ED, Yu P, Katagiri Y, Geller HM, Symes AJ., J. Neurochem. 119(4), 2011
PMID: 21895657
Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord.
Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG., J. Neurosci. 29(43), 2009
PMID: 19864556
The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair.
Shechter R, Raposo C, London A, Sagi I, Schwartz M., PLoS ONE 6(12), 2011
PMID: 22205935
Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury.
Bradbury EJ, Carter LM., Brain Res. Bull. 84(4-5), 2010
PMID: 20620201
The bright side of the glial scar in CNS repair.
Rolls A, Shechter R, Schwartz M., Nat. Rev. Neurosci. 10(3), 2009
PMID: 19229242
Functional regeneration of respiratory pathways after spinal cord injury.
Alilain WJ, Horn KP, Hu H, Dick TE, Silver J., Nature 475(7355), 2011
PMID: 21753849
Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord.
Giulian D, Robertson C., Ann. Neurol. 27(1), 1990
PMID: 2301926
Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury.
Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT., Exp. Neurol. 158(2), 1999
PMID: 10415142
Metachromatic leukodystrophy: arylsulfatase-A deficiency in skin fibroblast cultures.
Porter MT, Fluharty AL, Kihara H., Proc. Natl. Acad. Sci. U.S.A. 62(3), 1969
PMID: 5257010
Residues critical for formylglycine formation and/or catalytic activity of arylsulfatase A. Biochemistry
AUTHOR UNKNOWN, 1998
Up-regulation of GAP-43 and growth of axons in rat spinal cord after compression injury.
Curtis R, Green D, Lindsay RM, Wilkin GP., J. Neurocytol. 22(1), 1993
PMID: 8426193
False resurrections: distinguishing regenerated from spared axons in the injured central nervous system.
Steward O, Zheng B, Tessier-Lavigne M., J. Comp. Neurol. 459(1), 2003
PMID: 12629662
Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains.
Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG., J. Neurotrauma 23(5), 2006
PMID: 16689667

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23520469
PubMed | Europe PMC

Suchen in

Google Scholar