The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases

Stolzenberger J, Lindner S, Wendisch VF (2013)
Microbiology 159(Pt_8): 1770-1781.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Stolzenberger J, Lindner S, Wendisch VF. The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology. 2013;159(Pt_8):1770-1781.
Stolzenberger, J., Lindner, S., & Wendisch, V. F. (2013). The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology, 159(Pt_8), 1770-1781. doi:10.1099/mic.0.067314-0
Stolzenberger, J., Lindner, S., and Wendisch, V. F. (2013). The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology 159, 1770-1781.
Stolzenberger, J., Lindner, S., & Wendisch, V.F., 2013. The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology, 159(Pt_8), p 1770-1781.
J. Stolzenberger, S. Lindner, and V.F. Wendisch, “The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases”, Microbiology, vol. 159, 2013, pp. 1770-1781.
Stolzenberger, J., Lindner, S., Wendisch, V.F.: The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology. 159, 1770-1781 (2013).
Stolzenberger, Jessica, Lindner, Steffen, and Wendisch, Volker F. “The methylotrophic *Bacillus methanolicus* MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases”. Microbiology 159.Pt_8 (2013): 1770-1781.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

6-Phosphofructokinase and ribulose-5-phosphate 3-epimerase in methylotrophic Bacillus methanolicus ribulose monophosphate cycle.
Le SB, Heggeset TMB, Haugen T, Nærdal I, Brautaset T., Appl Microbiol Biotechnol 101(10), 2017
PMID: 28213736
High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.
Petrov K, Popova L, Petrova P., Appl Microbiol Biotechnol 101(11), 2017
PMID: 28337581
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer M, Vieira G, Brautaset T, Portais JC, Heux S., Microb Cell Fact 15(), 2016
PMID: 27251037
Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.
Müller JE, Heggeset TM, Wendisch VF, Vorholt JA, Brautaset T., Appl Microbiol Biotechnol 99(2), 2015
PMID: 25431011
Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.
Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET., Curr Opin Biotechnol 33(), 2015
PMID: 25796071
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF., Appl Microbiol Biotechnol 99(23), 2015
PMID: 26276544
Four Components of the Conjugated Redox System in Organisms: Carbon, Nitrogen, Sulfur, Oxygen.
Tereshina EV, Laskavy VN, Ivanenko SI., Biochemistry (Mosc) 80(9), 2015
PMID: 26555471
Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3.
Müller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA., Proteomics 14(6), 2014
PMID: 24452867

60 References

Data provided by Europe PubMed Central.

L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.
Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS., Appl. Environ. Microbiol. 56(4), 1990
PMID: 2111119
Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria.
Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA., Trends Biotechnol. 27(2), 2009
PMID: 19111927
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
Use of T7 RNA polymerase to direct expression of cloned genes.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW., Meth. Enzymol. 185(), 1990
PMID: 2199796
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791

AUTHOR UNKNOWN, Meth. Enzymol. 90(), 1982
Material in PUB:
Part of this Dissertation

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23760818
PubMed | Europe PMC

Search this title in

Google Scholar