Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021

Schlueter J-P, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A (2013)
Bmc Genomics 14(1): 156.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
Background: Sinorhizobium meliloti is a soil-dwelling a-proteobacterium that possesses a large, tripartite genome and engages in a nitrogen fixing symbiosis with its plant hosts. Although much is known about this important model organism, global characterization of genetic regulatory circuits has been hampered by a lack of information about transcription and promoters. Results: Using an RNAseq approach and RNA populations representing 16 different growth and stress conditions, we comprehensively mapped S. meliloti transcription start sites (TSS). Our work identified 17,001 TSS that we grouped into six categories based on the genomic context of their transcripts: mRNA (4,430 TSS assigned to 2,657 protein-coding genes), leaderless mRNAs (171), putative mRNAs (425), internal sense transcripts (7,650), antisense RNA (3,720), and trans-encoded sRNAs (605). We used this TSS information to identify transcription factor binding sites and putative promoter sequences recognized by seven of the 15 known S. meliloti sigma factors sigma(70), sigma(54), sigma(H1), sigma(H2), sigma(E1), sigma(E2), and sigma(E9)). Altogether, we predicted 2,770 new promoter sequences, including 1,302 located upstream of protein coding genes and 722 located upstream of antisense RNA or trans-encoded sRNA genes. To validate promoter predictions for targets of the general stress response s factor, RpoE2 (sigma(E2)), we identified rpoE2-dependent genes using microarrays and confirmed TSS for a subset of these by 5' RACE mapping. Conclusions: By identifying TSS and promoters on a global scale, our work provides a firm foundation for the continued study of S. meliloti gene expression with relation to gene organization, s factors and other transcription factors, and regulatory RNAs.
Publishing Year
ISSN
PUB-ID

Cite this

Schlueter J-P, Reinkensmeier J, Barnett MJ, et al. Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics. 2013;14(1):156.
Schlueter, J. - P., Reinkensmeier, J., Barnett, M. J., Lang, C., Krol, E., Giegerich, R., Long, S. R., et al. (2013). Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics, 14(1), 156. doi:10.1186/1471-2164-14-156
Schlueter, J. - P., Reinkensmeier, J., Barnett, M. J., Lang, C., Krol, E., Giegerich, R., Long, S. R., and Becker, A. (2013). Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics 14, 156.
Schlueter, J.-P., et al., 2013. Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics, 14(1), p 156.
J.-P. Schlueter, et al., “Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021”, Bmc Genomics, vol. 14, 2013, pp. 156.
Schlueter, J.-P., Reinkensmeier, J., Barnett, M.J., Lang, C., Krol, E., Giegerich, R., Long, S.R., Becker, A.: Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics. 14, 156 (2013).
Schlueter, Jan-Philip, Reinkensmeier, Jan, Barnett, Melanie J., Lang, Claus, Krol, Elizaveta, Giegerich, Robert, Long, Sharon R., and Becker, Anke. “Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021”. Bmc Genomics 14.1 (2013): 156.
This data publication is cited in the following publications:
This publication cites the following data publications:

61 Citations in Europe PMC

Data provided by Europe PubMed Central.

Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.
Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501120
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.
De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501121
Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.
Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A, Giegerich R, Toro N, Becker A, Jiménez-Zurdo JI., RNA Biol 11(5), 2014
PMID: 24786641
TSSAR: TSS annotation regime for dRNA-seq data.
Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiß S., BMC Bioinformatics 15(), 2014
PMID: 24674136
The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR).
Rossbach S, Kunze K, Albert S, Zehner S, Göttfert M., Mol Plant Microbe Interact 27(4), 2014
PMID: 24224534
RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti.
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L., Genome Biol Evol 6(4), 2014
PMID: 24723731
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
Charoenpanich P, Meyer S, Becker A, McIntosh M., J Bacteriol 195(14), 2013
PMID: 23687265
Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti.
Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, Jiménez-Zurdo JI., PLoS One 8(7), 2013
PMID: 23869210
Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria.
Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH., BMC Genomics 14(), 2013
PMID: 24028687

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23497287
PubMed | Europe PMC

Search this title in

Google Scholar