Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021
Schlueter J-P, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A (2013)
Bmc Genomics 14(1): 156.
Download
No fulltext has been uploaded. References only!
Journal Article
| Original Article
| Published
| English
No fulltext has been uploaded
Author
Schlueter, Jan-Philip
;
Reinkensmeier, JanUniBi
;
Barnett, Melanie J.
;
Lang, Claus
;
Krol, Elizaveta
;
Giegerich, RobertUniBi
;
Long, Sharon R.
;
Becker, Anke
Abstract
Background: Sinorhizobium meliloti is a soil-dwelling a-proteobacterium that possesses a large, tripartite genome and engages in a nitrogen fixing symbiosis with its plant hosts. Although much is known about this important model organism, global characterization of genetic regulatory circuits has been hampered by a lack of information about transcription and promoters. Results: Using an RNAseq approach and RNA populations representing 16 different growth and stress conditions, we comprehensively mapped S. meliloti transcription start sites (TSS). Our work identified 17,001 TSS that we grouped into six categories based on the genomic context of their transcripts: mRNA (4,430 TSS assigned to 2,657 protein-coding genes), leaderless mRNAs (171), putative mRNAs (425), internal sense transcripts (7,650), antisense RNA (3,720), and trans-encoded sRNAs (605). We used this TSS information to identify transcription factor binding sites and putative promoter sequences recognized by seven of the 15 known S. meliloti sigma factors sigma(70), sigma(54), sigma(H1), sigma(H2), sigma(E1), sigma(E2), and sigma(E9)). Altogether, we predicted 2,770 new promoter sequences, including 1,302 located upstream of protein coding genes and 722 located upstream of antisense RNA or trans-encoded sRNA genes. To validate promoter predictions for targets of the general stress response s factor, RpoE2 (sigma(E2)), we identified rpoE2-dependent genes using microarrays and confirmed TSS for a subset of these by 5' RACE mapping. Conclusions: By identifying TSS and promoters on a global scale, our work provides a firm foundation for the continued study of S. meliloti gene expression with relation to gene organization, s factors and other transcription factors, and regulatory RNAs.
Keywords
Publishing Year
ISSN
PUB-ID
Cite this
Schlueter J-P, Reinkensmeier J, Barnett MJ, et al. Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics. 2013;14(1):156.
Schlueter, J. - P., Reinkensmeier, J., Barnett, M. J., Lang, C., Krol, E., Giegerich, R., Long, S. R., et al. (2013). Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics, 14(1), 156. doi:10.1186/1471-2164-14-156
Schlueter, J. - P., Reinkensmeier, J., Barnett, M. J., Lang, C., Krol, E., Giegerich, R., Long, S. R., and Becker, A. (2013). Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics 14, 156.
Schlueter, J.-P., et al., 2013. Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics, 14(1), p 156.
J.-P. Schlueter, et al., “Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021”, Bmc Genomics, vol. 14, 2013, pp. 156.
Schlueter, J.-P., Reinkensmeier, J., Barnett, M.J., Lang, C., Krol, E., Giegerich, R., Long, S.R., Becker, A.: Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021. Bmc Genomics. 14, 156 (2013).
Schlueter, Jan-Philip, Reinkensmeier, Jan, Barnett, Melanie J., Lang, Claus, Krol, Elizaveta, Giegerich, Robert, Long, Sharon R., and Becker, Anke. “Global mapping of transcription start sites and promoter motifs in the symbiotic a-proteobacterium Sinorhizobium meliloti 1021”. Bmc Genomics 14.1 (2013): 156.
This data publication is cited in the following publications:
This publication cites the following data publications:
Data provided by the European Bioinformatics Institute (EBI)
ARXPR
1 Item found citing this article
E-GEOD-40391 (ARXPR: E-GEOD-40391)
Bibliography accession: E-GEOD-40391 - Identification of RpoE2 target genes in Sinorhizobium meliloti
Bibliography accession: E-GEOD-40391 - Identification of RpoE2 target genes in Sinorhizobium meliloti
61 Citations in Europe PMC
Data provided by Europe PubMed Central.
Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.
Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501120
Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501120
Global analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.
De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501121
De Nisco NJ, Abo RP, Wu CM, Penterman J, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501121
Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.
Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A, Giegerich R, Toro N, Becker A, Jiménez-Zurdo JI., RNA Biol 11(5), 2014
PMID: 24786641
Torres-Quesada O, Reinkensmeier J, Schlüter JP, Robledo M, Peregrina A, Giegerich R, Toro N, Becker A, Jiménez-Zurdo JI., RNA Biol 11(5), 2014
PMID: 24786641
TSSAR: TSS annotation regime for dRNA-seq data.
Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiß S., BMC Bioinformatics 15(), 2014
PMID: 24674136
Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiß S., BMC Bioinformatics 15(), 2014
PMID: 24674136
The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR).
Rossbach S, Kunze K, Albert S, Zehner S, Göttfert M., Mol Plant Microbe Interact 27(4), 2014
PMID: 24224534
Rossbach S, Kunze K, Albert S, Zehner S, Göttfert M., Mol Plant Microbe Interact 27(4), 2014
PMID: 24224534
RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti.
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L., Genome Biol Evol 6(4), 2014
PMID: 24723731
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L., Genome Biol Evol 6(4), 2014
PMID: 24723731
Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti.
Charoenpanich P, Meyer S, Becker A, McIntosh M., J Bacteriol 195(14), 2013
PMID: 23687265
Charoenpanich P, Meyer S, Becker A, McIntosh M., J Bacteriol 195(14), 2013
PMID: 23687265
Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti.
Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, Jiménez-Zurdo JI., PLoS One 8(7), 2013
PMID: 23869210
Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, Jiménez-Zurdo JI., PLoS One 8(7), 2013
PMID: 23869210
The succinoglycan endoglycanase encoded by exoK is required for efficient symbiosis of Sinorhizobium meliloti 1021 with the host plants Medicago truncatula and Medicago sativa (Alfalfa).
Mendis HC, Queiroux C, Brewer TE, Davis OM, Washburn BK, Jones KM., Mol Plant Microbe Interact 26(9), 2013
PMID: 23656330
Mendis HC, Queiroux C, Brewer TE, Davis OM, Washburn BK, Jones KM., Mol Plant Microbe Interact 26(9), 2013
PMID: 23656330
Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria.
Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH., BMC Genomics 14(), 2013
PMID: 24028687
Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AH., BMC Genomics 14(), 2013
PMID: 24028687
Bound to Succeed: transcription factor binding-site prediction and its contribution to understanding virulence and environmental adaptation in bacterial plant pathogens.
Saha S, Lindeberg M., Mol Plant Microbe Interact 26(10), 2013
PMID: 23802990
Saha S, Lindeberg M., Mol Plant Microbe Interact 26(10), 2013
PMID: 23802990
104 References
Data provided by Europe PubMed Central.
CtrA, a global response regulator, uses a distinct second category of weak DNA binding sites for cell cycle transcription control in Caulobacter crescentus.
Spencer W, Siam R, Ouimet MC, Bastedo DP, Marczynski GT., J. Bacteriol. 191(17), 2009
PMID: 19542275
Spencer W, Siam R, Ouimet MC, Bastedo DP, Marczynski GT., J. Bacteriol. 191(17), 2009
PMID: 19542275
Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria.
Quandt J, Hynes MF., Gene 127(1), 1993
PMID: 8486283
Quandt J, Hynes MF., Gene 127(1), 1993
PMID: 8486283
Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production.
Pinedo CA, Bringhurst RM, Gage DJ., J. Bacteriol. 190(8), 2008
PMID: 18281401
Pinedo CA, Bringhurst RM, Gage DJ., J. Bacteriol. 190(8), 2008
PMID: 18281401
Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
Edgar R, Domrachev M, Lash AE., Nucleic Acids Res. 30(1), 2002
PMID: 11752295
Edgar R, Domrachev M, Lash AE., Nucleic Acids Res. 30(1), 2002
PMID: 11752295
Export
0 Marked PublicationsWeb of Science
View record in Web of Science®Sources
PMID: 23497287
PubMed | Europe PMC