Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid

Furtado GC, Marinkovic T, Martin AP, Garin A, Hoch B, Hübner W, Chen BK, Genden E, Skobe M, Lira SA (2007)
Proceedings of the National Academy of Sciences of the United States of America 104(12): 5026-5031.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
Infiltration of lymphocytes into the thyroid gland and formation of lymph node-like structures is a hallmark of Hashimoto's thyroiditis. Here we demonstrate that lymphatic vessels are present within these infiltrates. Mice overexpressing the chemokine CCL21 in the thyroid (TGCCL21 mice) developed similar lymphoid infiltrates and lymphatic vessels. TGCCL21 mice lacking mature T and B cells (RAGTGCCL21 mice) did not have cellular infiltrates or increased number of lymphatic vessels compared with controls. Transfer of CD3(+)CD4(+) T cells into RAGTGCCL21 mice promoted the development of LYVE-1(+)podoplanin(+)Prox-1(+) vessels in the thyroid. Genetic deletion of lymphotoxin beta receptor or lymphotoxin alpha abrogated development of lymphatic vessels in the inflamed areas in the thyroid but did not affect development of neighboring lymphatics. These results define a model for the study of inflammatory lymphangiogenesis in the thyroid and implicate lymphotoxin beta receptor signaling in this process.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Furtado GC, Marinkovic T, Martin AP, et al. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(12):5026-5031.
Furtado, G. C., Marinkovic, T., Martin, A. P., Garin, A., Hoch, B., Hübner, W., Chen, B. K., et al. (2007). Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5026-5031.
Furtado, G. C., Marinkovic, T., Martin, A. P., Garin, A., Hoch, B., Hübner, W., Chen, B. K., Genden, E., Skobe, M., and Lira, S. A. (2007). Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America 104, 5026-5031.
Furtado, G.C., et al., 2007. Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America, 104(12), p 5026-5031.
G.C. Furtado, et al., “Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid”, Proceedings of the National Academy of Sciences of the United States of America, vol. 104, 2007, pp. 5026-5031.
Furtado, G.C., Marinkovic, T., Martin, A.P., Garin, A., Hoch, B., Hübner, W., Chen, B.K., Genden, E., Skobe, M., Lira, S.A.: Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proceedings of the National Academy of Sciences of the United States of America. 104, 5026-5031 (2007).
Furtado, Glaucia C, Marinkovic, Tatjana, Martin, Andrea P, Garin, Alexandre, Hoch, Benjamin, Hübner, Wolfgang, Chen, Benjamin K, Genden, Eric, Skobe, Mihaela, and Lira, Sergio A. “Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid”. Proceedings of the National Academy of Sciences of the United States of America 104.12 (2007): 5026-5031.
This data publication is cited in the following publications:
This publication cites the following data publications:

40 Citations in Europe PMC

Data provided by Europe PubMed Central.

Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.
Hwang JY, Randall TD, Silva-Sanchez A., Front Immunol 7(), 2016
PMID: 27446088
Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity.
Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhard VH., Nat Commun 6(), 2015
PMID: 25968334
Stromal cells in chronic inflammation and tertiary lymphoid organ formation.
Buckley CD, Barone F, Nayar S, Benezech C, Caamano J., Annu. Rev. Immunol. 33(), 2015
PMID: 25861980
Interplay between Inflammatory Responses and Lymphatic Vessels.
Shin K, Lee SH., Immune Netw 14(4), 2014
PMID: 25177250
Preferential lymphatic growth in bronchus-associated lymphoid tissue in sustained lung inflammation.
Baluk P, Adams A, Phillips K, Feng J, Hong YK, Brown MB, McDonald DM., Am. J. Pathol. 184(5), 2014
PMID: 24631179
The role of lymphotoxin signaling in the development of autoimmune pancreatitis and associated secondary extra-pancreatic pathologies.
Seleznik GM, Zoller J, O'Connor T, Graf R, Heikenwalder M., Cytokine Growth Factor Rev. 25(2), 2014
PMID: 24508087
Inflammatory lymphangiogenesis: cellular mediators and functional implications.
Tan KW, Chong SZ, Angeli V., Angiogenesis 17(2), 2014
PMID: 24449091
The inflammatory response of lymphatic endothelium.
Aebischer D, Iolyeva M, Halin C., Angiogenesis 17(2), 2014
PMID: 24154862
Control of dichotomic innate and adaptive immune responses by artery tertiary lymphoid organs in atherosclerosis.
Weih F, Grabner R, Hu D, Beer M, Habenicht AJ., Front Physiol 3(), 2012
PMID: 22783198
Lymphangiogenesis, myeloid cells and inflammation.
Xing L, Ji RC., Expert Rev Clin Immunol 4(5), 2008
PMID: 20476963
Chemokine orchestration of autoimmune thyroiditis.
Kimura H, Caturegli P., Thyroid 17(10), 2007
PMID: 17910527

50 References

Data provided by Europe PubMed Central.

BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis.
Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG., Immunity 12(5), 2000
PMID: 10843380
Lymphatic endothelium: morphological, molecular and functional properties.
Pepper MS, Skobe M., J. Cell Biol. 163(2), 2003
PMID: 14581448
Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis.
Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF., J. Exp. Med. 196(11), 2002
PMID: 12461084
VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins.
Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, Bohlen P, Senger DR, Detmar M., FASEB J. 18(10), 2004
PMID: 15132990
Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2.
Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M., Cancer Res. 66(5), 2006
PMID: 16510584
Molecular and cellular mechanisms of lymphangiogenesis.
Al-Rawi MA, Mansel RE, Jiang WG., Eur J Surg Oncol 31(2), 2005
PMID: 15698725
Autoimmune thyroid disease: further developments in our understanding.
Weetman AP, McGregor AM., Endocr. Rev. 15(6), 1994
PMID: 7705281
Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium.
Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo K, Kerjaschki D., Am. J. Pathol. 154(2), 1999
PMID: 10027397

Jackson DG., 2004
Molecular characterization of lymphatic endothelial cells.
Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12446836
An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype.
Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G., EMBO J. 21(7), 2002
PMID: 11927535
Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid.
Marinkovic T, Garin A, Yokota Y, Fu YX, Ruddle NH, Furtado GC, Lira SA., J. Clin. Invest. 116(10), 2006
PMID: 16998590
Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo.
Bjorndahl M, Cao R, Nissen LJ, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y., Proc. Natl. Acad. Sci. U.S.A. 102(43), 2005
PMID: 16230630
The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues.
Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K., Immunity 9(1), 1998
PMID: 9697836
Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function.
Browning JL, Allaire N, Ngam-Ek A, Notidis E, Hunt J, Perrin S, Fava RA., Immunity 23(5), 2005
PMID: 16286021
Lymphocyte traffic in lymphoid organ neogenesis: differential roles of Ltalpha and LTalphabeta.
Drayton DL, Chan K, Lesslauer W, Lee J, Ying XY, Ruddle NH., Adv. Exp. Med. Biol. 512(), 2002
PMID: 12405186
Distinct roles for lymphotoxin-alpha and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue.
Korner H, Cook M, Riminton DS, Lemckert FA, Hoek RM, Ledermann B, Kontgen F, Fazekas de St Groth B, Sedgwick JD., Eur. J. Immunol. 27(10), 1997
PMID: 9368616
Network communications: lymphotoxins, LIGHT, and TNF.
Ware CF., Annu. Rev. Immunol. 23(), 2005
PMID: 15771586
VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells.
Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S., Blood 101(1), 2003
PMID: 12393704
The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways.
Dejardin E, Droin NM, Delhase M, Haas E, Cao Y, Makris C, Li ZW, Karin M, Ware CF, Green DR., Immunity 17(4), 2002
PMID: 12387745
RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement.
Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM., Cell 68(5), 1992
PMID: 1547487

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17360402
PubMed | Europe PMC

Search this title in

Google Scholar