Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields

Eickenberg B, Wittbracht F, Stohmann P, Schubert J-R, Brill C, Weddemann A, Hütten A (2013)
Lab On A Chip 13(5): 920-927.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Under the influence of homogeneous, rotating magnetic fields, superparamagnetic beads can be assembled into one- and two-dimensional superstructures on demand and used as dynamic components in microfluidic systems for colloidal separation. In this paper, the influence of the magnetic field strength and the rotation frequency on the device efficiency is studied. The optimum region is found to be between 100 and 200 rpm for a magnetic field strength of 330 Oe, while the highest value for separated mass per time (28 pg s(-1)) is achieved for a flow velocity of 370 mu m s(-1) at a magnetic field strength of 690 Oe. Furthermore, the employment of superparamagnetic beads as a continuous-flow bioseparation device is shown in a proof-of-principle study.
Erscheinungsjahr
Zeitschriftentitel
Lab On A Chip
Band
13
Zeitschriftennummer
5
Seite
920-927
ISSN
eISSN
PUB-ID

Zitieren

Eickenberg B, Wittbracht F, Stohmann P, et al. Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields. Lab On A Chip. 2013;13(5):920-927.
Eickenberg, B., Wittbracht, F., Stohmann, P., Schubert, J. - R., Brill, C., Weddemann, A., & Hütten, A. (2013). Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields. Lab On A Chip, 13(5), 920-927. doi:10.1039/c2lc41316g
Eickenberg, B., Wittbracht, F., Stohmann, P., Schubert, J. - R., Brill, C., Weddemann, A., and Hütten, A. (2013). Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields. Lab On A Chip 13, 920-927.
Eickenberg, B., et al., 2013. Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields. Lab On A Chip, 13(5), p 920-927.
B. Eickenberg, et al., “Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields”, Lab On A Chip, vol. 13, 2013, pp. 920-927.
Eickenberg, B., Wittbracht, F., Stohmann, P., Schubert, J.-R., Brill, C., Weddemann, A., Hütten, A.: Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields. Lab On A Chip. 13, 920-927 (2013).
Eickenberg, Bernhard, Wittbracht, Frank, Stohmann, Patrick, Schubert, Jennifer-Rose, Brill, Christopher, Weddemann, Alexander, and Hütten, Andreas. “Continuous-flow particle guiding based on dipolar coupled magnetic superstructures in rotating magnetic fields”. Lab On A Chip 13.5 (2013): 920-927.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Online Detection of Peroxidase Using 3D Printing, Active Magnetic Mixing, and Spectra Analysis.
Bai S, Gan C, Cai G, Wang L, Chen M, Han Q, Lin J., Biomed Res Int 2017(), 2017
PMID: 28523275
A Review on Micromixers.
Cai G, Xue L, Zhang H, Lin J., Micromachines (Basel) 8(9), 2017
PMID: 30400464
Phaseguide assisted liquid lamination for magnetic particle-based assays.
Phurimsak C, Yildirim E, Tarn MD, Trietsch SJ, Hankemeier T, Pamme N, Vulto P., Lab Chip 14(13), 2014
PMID: 24832933

51 References

Daten bereitgestellt von Europe PubMed Central.

Magnetism and microfluidics.
Pamme N., Lab Chip 6(1), 2005
PMID: 16372066

Gijs, Microfluid Nanofluid 1(), 2004

Nguyen, Microfluid. Nanofluid. 12(), 2012
A magnetic microchip for controlled transport of attomole levels of proteins.
Johansson L, Gunnarsson K, Bijelovic S, Eriksson K, Surpi A, Gothelid E, Svedlindh P, Oscarsson S., Lab Chip 10(5), 2009
PMID: 20162242
Beads and chips: new recipes for analysis.
Verpoorte E., Lab Chip 3(4), 2003
PMID: 15007447

Grützkau, Cytometry Part A 77A(), 2010

Neurauter, Adv. Biochem. Eng. Biot. 106(), 2007

Martins, J. Magn. Magn. Mater. 322(), 2010
Magnetoresistive-based biosensors and biochips.
Graham DL, Ferreira HA, Freitas PP., Trends Biotechnol. 22(9), 2004
PMID: 15331226

Graham, Biosens. Bioelectron. 18(), 2002
How to design magneto-based total analysis systems for biomedical applications.
Weddemann A, Albon C, Auge A, Wittbracht F, Hedwig P, Akemeier D, Rott K, Meissner D, Jutzi P, Hutten A., Biosens Bioelectron 26(4), 2010
PMID: 20638263

Østergaard, J. Magn. Magn. Mater. 194(), 1999

Deng, Appl. Phys. Lett. 77(), 2001

Weddemann, Appl. Phys. Lett. 94(), 2009

Ganguly, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2(), 2010

Wittbracht, Microfluid. Nanofluid 13(), 2013

Wittbracht, J. Appl. Phys. 109(), 2011

Vuppu, Langmuir 19(), 2003

Vuppu, J. Appl. Phys. 96(), 2004
Microstructure evolution in magnetorheological suspensions governed by Mason number.
Melle S, Calderon OG, Rubio MA, Fuller GG., Phys Rev E Stat Nonlin Soft Matter Phys 68(4 Pt 1), 2003
PMID: 14682943
Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields.
Petousis I, Homburg E, Derks R, Dietzel A., Lab Chip 7(12), 2007
PMID: 18030396
Magneto-mechanical mixing and manipulation of picoliter volumes in vesicles.
Franke T, Schmid L, Weitz DA, Wixforth A., Lab Chip 9(19), 2009
PMID: 19967121

Weddemann, Microfluid. Nanofluid. 10(), 2011
Biochips: non-conventional strategies for biosensing elements immobilization.
Marquette CA, Corgier BP, Heyries KA, Blum LJ., Front. Biosci. 13(), 2008
PMID: 17981555

Derks, Microfluid. Nanofluid. 9(), 2010

Mao, Phys. Rev. B 84(), 2011

Wittbracht, Appl. Phys. Lett. 100(), 2012
Magnetic field induced assembly of highly ordered two-dimensional particle arrays.
Weddemann A, Wittbracht F, Eickenberg B, Hutten A., Langmuir 26(24), 2010
PMID: 21090763

Friend, Biomicrofluidics 4(), 2010
Components for integrated poly(dimethylsiloxane) microfluidic systems.
Ng JM, Gitlin I, Stroock AD, Whitesides GM., Electrophoresis 23(20), 2002
PMID: 12412113

Fonnum, J. Magn. Magn. Mater. 293(), 2005

Inglis, J. Appl. Phys. 99(), 2006

Smistrup, J. Magn. Magn. Mater. 293(), 2005
Microfluidic capturing-dynamics of paramagnetic bead suspensions.
Mikkelsen C, Bruus H., Lab Chip 5(11), 2005
PMID: 16234954

Wei, J. Magn. Magn. Mater. 322(), 2010

Sinha, J. Magn. Magn. Mater. 321(), 2009
An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy.
Choi JW, Liakopoulos TM, Ahn CH., Biosens Bioelectron 16(6), 2001
PMID: 11672655

Pamme, J. Magn. Magn. Mater. 307(), 2006

Ganguly, Microfluid. Nanofluid. 8(), 2012
Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay.
Sasso LA, Undar A, Zahn JD., Microfluid Nanofluidics 9(2-3), 2010
PMID: 20694166

Lee, Microfluid. Nanofluid. 11(), 2011
Continuous microfluidic DNA extraction using phase-transfer magnetophoresis.
Karle M, Miwa J, Czilwik G, Auwarter V, Roth G, Zengerle R, von Stetten F., Lab Chip 10(23), 2010
PMID: 20938545

Song, Sens. Actuators, B 141(), 2009

Rong, J. Micromech. Microeng. 16(), 2006
Multitarget magnetic activated cell sorter.
Adams JD, Kim U, Soh HT., Proc. Natl. Acad. Sci. U.S.A. 105(47), 2008
PMID: 19015523

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23319201
PubMed | Europe PMC

Suchen in

Google Scholar