Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids

Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, de Marsac NT, Gugger M, et al. (2013)
Genome Biology And Evolution 5(1): 31-44.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Cyanobacteria forged two major evolutionary transitions with the invention of oxygenic photosynthesis and the bestowal of photosynthetic lifestyle upon eukaryotes through endosymbiosis. Information germane to understanding those transitions is imprinted in cyanobacterial genomes, but deciphering it is complicated by lateral gene transfer (LGT). Here, we report genome sequences for the morphologically most complex true-branching cyanobacteria, and for Scytonema hofmanni PCC 7110, which with 12,356 proteins is the most gene-rich prokaryote currently known. We investigated components of cyanobacterial evolution that have been vertically inherited, horizontally transferred, and donated to eukaryotes at plastid origin. The vertical component indicates a freshwater origin for water-splitting photosynthesis. Networks of the horizontal component reveal that 60% of cyanobacterial gene families have been affected by LGT. Plant nuclear genes acquired from cyanobacteria define a lower bound frequency of 611 multigene families that, in turn, specify diazotrophic cyanobacterial lineages as having a gene collection most similar to that possessed by the plastid ancestor.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Dagan T, Roettger M, Stucken K, et al. Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biology And Evolution. 2013;5(1):31-44.
Dagan, T., Roettger, M., Stucken, K., Landan, G., Koch, R., Major, P., Gould, S. B., et al. (2013). Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biology And Evolution, 5(1), 31-44. doi:10.1093/gbe/evs117
Dagan, T., Roettger, M., Stucken, K., Landan, G., Koch, R., Major, P., Gould, S. B., Goremykin, V. V., Rippka, R., de Marsac, N. T., et al. (2013). Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biology And Evolution 5, 31-44.
Dagan, T., et al., 2013. Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biology And Evolution, 5(1), p 31-44.
T. Dagan, et al., “Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids”, Genome Biology And Evolution, vol. 5, 2013, pp. 31-44.
Dagan, T., Roettger, M., Stucken, K., Landan, G., Koch, R., Major, P., Gould, S.B., Goremykin, V.V., Rippka, R., de Marsac, N.T., Gugger, M., Lockhart, P.J., Allen, J.F., Brune, I., Maus, I., Pühler, A., Martin, W.F.: Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biology And Evolution. 5, 31-44 (2013).
Dagan, Tal, Roettger, Mayo, Stucken, Karina, Landan, Giddy, Koch, Robin, Major, Peter, Gould, Sven B., Goremykin, Vadim V., Rippka, Rosmarie, de Marsac, Nicole Tandeau, Gugger, Muriel, Lockhart, Peter J., Allen, John F., Brune, Iris, Maus, Irena, Pühler, Alfred, and Martin, William F. “Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids”. Genome Biology And Evolution 5.1 (2013): 31-44.
This data publication is cited in the following publications:
This publication cites the following data publications:

70 Citations in Europe PMC

Data provided by Europe PubMed Central.

Ancient balancing selection on heterocyst function in a cosmopolitan cyanobacterium.
Sano EB, Wall CA, Hutchins PR, Miller SR., Nat Ecol Evol 2(3), 2018
PMID: 29335576
Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.
Koch R, Kupczok A, Stucken K, Ilhan J, Hammerschmidt K, Dagan T., BMC Evol. Biol. 17(1), 2017
PMID: 28859625
Biotic interactions as drivers of algal origin and evolution.
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D., New Phytol. 216(3), 2017
PMID: 28857164
Endosymbiosis: Did Plastids Evolve from a Freshwater Cyanobacterium?
de Vries J, Archibald JM., Curr. Biol. 27(3), 2017
PMID: 28171752
Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.
Ramirez-Sanchez O, Perez-Rodriguez P, Delaye L, Tiessen A., Genomics Proteomics Bioinformatics 14(6), 2016
PMID: 27998811
Fluorescence in situ hybridization of Microcystis strains producing microcystin using specific mRNA probes.
Zeller P, Mejean A, Biegala I, Contremoulins V, Ploux O., Lett. Appl. Microbiol. 63(5), 2016
PMID: 27538762
Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria.
Rigonato J, Gama WA, Alvarenga DO, Branco LH, Brandini FP, Genuario DB, Fiore MF., Int. J. Syst. Evol. Microbiol. 66(8), 2016
PMID: 27054834
Complete genome sequence of cyanobacterium Fischerella sp. NIES-3754, providing thermoresistant optogenetic tools.
Hirose Y, Fujisawa T, Ohtsubo Y, Katayama M, Misawa N, Wakazuki S, Shimura Y, Nakamura Y, Kawachi M, Yoshikawa H, Eki T, Kanesaki Y., J. Biotechnol. 220(), 2016
PMID: 26784989
Advances in genomics, transcriptomics and proteomics of toxin-producing cyanobacteria.
D'Agostino PM, Woodhouse JN, Makower AK, Yeung AC, Ongley SE, Micallef ML, Moffitt MC, Neilan BA., Environ Microbiol Rep 8(1), 2016
PMID: 26663762
The complete chloroplast genome sequence of Amentotaxus argotaenia (Taxaceae).
Li J, Gao L, Tao K, Su Y, Wang T., Mitochondrial DNA A DNA Mapp Seq Anal 27(4), 2016
PMID: 26119122
Evolutionary origins of the photosynthetic water oxidation cluster: bicarbonate permits Mn(2+) photo-oxidation by anoxygenic bacterial reaction centers.
Khorobrykh A, Dasgupta J, Kolling DR, Terentyev V, Klimov VV, Dismukes GC., Chembiochem 14(14), 2013
PMID: 24006214

107 References

Data provided by Europe PubMed Central.

Treeness triangles: visualizing the loss of phylogenetic signal.
White WT, Hills SF, Gaddam R, Holland BR, Penny D., Mol. Biol. Evol. 24(9), 2007
PMID: 17630280
The evolution of Photosystem II: insights into the past and future.
Williamson A, Conlan B, Hillier W, Wydrzynski T., Photosyn. Res. 107(1), 2011
PMID: 20512415
Complex evolution of photosynthesis.
Xiong J, Bauer CE., Annu Rev Plant Biol 53(), 2002
PMID: 12221987
Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus.
Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP., Genome Biol Evol 1(), 2009
PMID: 20333202
Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events.
Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT., Genome Res. 16(9), 2006
PMID: 16899658

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23221676
PubMed | Europe PMC

Search this title in

Google Scholar