Stable nuclear transformation of Eudorina elegans

Lerche K, Hallmann A (2013)
BMC Biotechnology 13(1).

Download
OA
Journal Article | Published | English
Abstract
UNLABELLED: ABSTRACT: BACKGROUND: A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii) and a multicellular alga with differentiated cell types (Volvox carteri). Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16-32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. RESULTS: Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3'-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold) at elevated temperatures. Long-term stability and both constitutive and inducible expression of the co-bombarded gluc gene was demonstrated by transcription analysis and bioluminescence assays. CONCLUSIONS: Heterologous flanking sequences, including promoters, work in E. elegans and permit both constitutive and inducible expression of heterologous genes. Stable nuclear transformation of E. elegans is now routine. Thus, we show that genetic engineering of a species is possible even without the resources of endogenous genes and promoters.
Publishing Year
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Lerche K, Hallmann A. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology. 2013;13(1).
Lerche, K., & Hallmann, A. (2013). Stable nuclear transformation of Eudorina elegans. BMC Biotechnology, 13(1).
Lerche, K., and Hallmann, A. (2013). Stable nuclear transformation of Eudorina elegans. BMC Biotechnology 13.
Lerche, K., & Hallmann, A., 2013. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology, 13(1).
K. Lerche and A. Hallmann, “Stable nuclear transformation of Eudorina elegans”, BMC Biotechnology, vol. 13, 2013.
Lerche, K., Hallmann, A.: Stable nuclear transformation of Eudorina elegans. BMC Biotechnology. 13, (2013).
Lerche, Kai, and Hallmann, Armin. “Stable nuclear transformation of Eudorina elegans”. BMC Biotechnology 13.1 (2013).
Main File(s)
Access Level
OA Open Access
Last Uploaded
2013-03-28 10:48:06

This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Understanding nitrate assimilation and its regulation in microalgae.
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E., Front Plant Sci 6(), 2015
PMID: 26579149
Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.
Qin J, Zhou YJ, Krivoruchko A, Huang M, Liu L, Khoomrung S, Siewers V, Jiang B, Nielsen J., Nat Commun 6(), 2015
PMID: 26345617
The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri.
von der Heyde EL, Klein B, Abram L, Hallmann A., BMC Biotechnol. 15(), 2015
PMID: 25888095
Stable nuclear transformation of Pandorina morum.
Lerche K, Hallmann A., BMC Biotechnol. 14(), 2014
PMID: 25031031

64 References

Data provided by Europe PubMed Central.

Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri.
Hallmann A, Sumper M., Proc. Natl. Acad. Sci. U.S.A. 91(24), 1994
PMID: 7972102
Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast.
Franklin S, Ngo B, Efuet E, Mayfield SP., Plant J. 30(6), 2002
PMID: 12061904
Purification and properties of Renilla reniformis luciferase.
Matthews JC, Hori K, Cormier MJ., Biochemistry 16(1), 1977
PMID: 12797
Gene replacement by homologous recombination in the multicellular green alga Volvox carteri.
Hallmann A, Rappel A, Sumper M., Proc. Natl. Acad. Sci. U.S.A. 94(14), 1997
PMID: 9207115
Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation.
Diener DR, Curry AM, Johnson KA, Williams BD, Lefebvre PA, Kindle KL, Rosenbaum JL., Proc. Natl. Acad. Sci. U.S.A. 87(15), 1990
PMID: 2377611
Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.
Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK., Plant Physiol. 137(2), 2005
PMID: 15653810
Enzymes involved in anaerobic respiration appear to play a role in Actinobacillus pleuropneumoniae virulence.
Jacobsen I, Hennig-Pauka I, Baltes N, Trost M, Gerlach GF., Infect. Immun. 73(1), 2005
PMID: 15618158

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23402598
PubMed | Europe PMC

Search this title in

Google Scholar