UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota

Campbell JH, O'Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Söll D, Podar M (2013)
Proceedings of the National Academy of Sciences of the United States of America 110(14): 5540-5545.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNA(Gly)UCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNA(Gly)UCA with glycine in vitro with similar activity compared with normal tRNA(Gly)UCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNA(Gly)UCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota.
Erscheinungsjahr
Zeitschriftentitel
Proceedings of the National Academy of Sciences of the United States of America
Band
110
Zeitschriftennummer
14
Seite
5540-5545
ISSN
eISSN
PUB-ID

Zitieren

Campbell JH, O'Donoghue P, Campbell AG, et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(14):5540-5545.
Campbell, J. H., O'Donoghue, P., Campbell, A. G., Schwientek, P., Sczyrba, A., Woyke, T., Söll, D., et al. (2013). UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5540-5545. doi:10.1073/pnas.1303090110
Campbell, J. H., O'Donoghue, P., Campbell, A. G., Schwientek, P., Sczyrba, A., Woyke, T., Söll, D., and Podar, M. (2013). UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America 110, 5540-5545.
Campbell, J.H., et al., 2013. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America, 110(14), p 5540-5545.
J.H. Campbell, et al., “UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota”, Proceedings of the National Academy of Sciences of the United States of America, vol. 110, 2013, pp. 5540-5545.
Campbell, J.H., O'Donoghue, P., Campbell, A.G., Schwientek, P., Sczyrba, A., Woyke, T., Söll, D., Podar, M.: UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proceedings of the National Academy of Sciences of the United States of America. 110, 5540-5545 (2013).
Campbell, James H., O'Donoghue, Patrick, Campbell, Alisha G., Schwientek, Patrick, Sczyrba, Alexander, Woyke, Tanja, Söll, Dieter, and Podar, Mircea. “UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota”. Proceedings of the National Academy of Sciences of the United States of America 110.14 (2013): 5540-5545.

63 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria.
Ling J, Daoud R, Lajoie MJ, Church GM, Söll D, Lang BF., Nucleic Acids Res 42(1), 2014
PMID: 24049072
Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics.
Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T., Nat Protoc 9(5), 2014
PMID: 24722403
Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota.
Campbell AG, Schwientek P, Vishnivetskaya T, Woyke T, Levy S, Beall CJ, Griffen A, Leys E, Podar M., Environ Microbiol 16(9), 2014
PMID: 24738594
Stop codon reassignments in the wild.
Ivanova NN, Schwientek P, Tripp HJ, Rinke C, Pati A, Huntemann M, Visel A, Woyke T, Kyrpides NC, Rubin EM., Science 344(6186), 2014
PMID: 24855270
Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and niche partitioning between Alpha- and Gammaproteobacteria in a tidal sediment microbial community naturally selected in a laboratory chemostat.
Hanke A, Hamann E, Sharma R, Geelhoed JS, Hargesheimer T, Kraft B, Meyer V, Lenk S, Osmers H, Wu R, Makinwa K, Hettich RL, Banfield JF, Tegetmeyer HE, Strous M., Front Microbiol 5(), 2014
PMID: 24904545
Inter-species interconnections in acid mine drainage microbial communities.
Comolli LR, Banfield JF., Front Microbiol 5(), 2014
PMID: 25120533
Advancements toward a systems level understanding of the human oral microbiome.
McLean JS., Front Cell Infect Microbiol 4(), 2014
PMID: 25120956
Insights into the phylogeny and coding potential of microbial dark matter.
Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T., Nature 499(7459), 2013
PMID: 23851394
Upgrading protein synthesis for synthetic biology.
O'Donoghue P, Ling J, Wang YS, Söll D., Nat Chem Biol 9(10), 2013
PMID: 24045798
An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome.
Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS., Microbiome 1(1), 2013
PMID: 24451062
Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla.
Kantor RS, Wrighton KC, Handley KM, Sharon I, Hug LA, Castelle CJ, Thomas BC, Banfield JF., MBio 4(5), 2013
PMID: 24149512

39 References

Daten bereitgestellt von Europe PubMed Central.

Worlds within worlds: evolution of the vertebrate gut microbiota.
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI., Nat. Rev. Microbiol. 6(10), 2008
PMID: 18794915
Recognition of tRNA(Gly) by three widely diverged glycyl-tRNA synthetases: evolution of tRNA recognition.
Nameki N, Tamura K, Asahara H, Hasegawa T., Nucleic Acids Symp. Ser. (37), 1997
PMID: 9586030
Translational suppression: When two wrongs DO make a right
Murgola EJ., 1994
An extreme codon preference strategy: codon reassignment.
Andersson GE, Kurland CG., Mol. Biol. Evol. 8(4), 1991
PMID: 1921708
Evolution of the genetic code as affected by anticodon content.
Osawa S, Jukes TH., Trends Genet. 4(7), 1988
PMID: 3070867
Transfer RNA mutation and the malleability of the genetic code.
Schultz DW, Yarus M., J. Mol. Biol. 235(5), 1994
PMID: 8107079
Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp.
Santos MA, Cheesman C, Costa V, Moradas-Ferreira P, Tuite MF., Mol. Microbiol. 31(3), 1999
PMID: 10048036
Lack of peptide-release activity responding to codon UGA in Mycoplasma capricolum.
Inagaki Y, Bessho Y, Osawa S., Nucleic Acids Res. 21(6), 1993
PMID: 8464722
Population genomics of early events in the ecological differentiation of bacteria.
Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ., Science 336(6077), 2012
PMID: 22491847
Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome.
Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA 3rd, Loomer P, Armitage GC, Relman DA., ISME J 6(5), 2012
PMID: 22158393
Ecology drives a global network of gene exchange connecting the human microbiome.
Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ., Nature 480(7376), 2011
PMID: 22037308
Whole genome amplification and de novo assembly of single bacterial cells.
Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW., PLoS ONE 4(9), 2009
PMID: 19724646

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23509275
PubMed | Europe PMC

Suchen in

Google Scholar