Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1

Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly J-P, Bittl R, Heberle J, Ahmad M (2012)
Angewandte Chemie - International Edition 51(37): 9356-9360.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ;
Publishing Year
ISSN
PUB-ID

Cite this

Burney S, Wenzel R, Kottke T, et al. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition. 2012;51(37):9356-9360.
Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J. - P., Bittl, R., et al. (2012). Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition, 51(37), 9356-9360.
Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J. - P., Bittl, R., Heberle, J., and Ahmad, M. (2012). Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition 51, 9356-9360.
Burney, S., et al., 2012. Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition, 51(37), p 9356-9360.
S. Burney, et al., “Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1”, Angewandte Chemie - International Edition, vol. 51, 2012, pp. 9356-9360.
Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J.-P., Bittl, R., Heberle, J., Ahmad, M.: Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1. Angewandte Chemie - International Edition. 51, 9356-9360 (2012).
Burney, Sarah, Wenzel, Ringo, Kottke, Tilman, Roussel, Thomas, Hoang, Nathalie, Bouly, Jean-Pierre, Bittl, Robert, Heberle, Joachim, and Ahmad, Margaret. “Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1”. Angewandte Chemie - International Edition 51.37 (2012): 9356-9360.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
El-Esawi M, Glascoe A, Engle D, Ritz T, Link J, Ahmad M., Plant Signal Behav 10(9), 2015
PMID: 26313597
Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E., FEBS J. 282(16), 2015
PMID: 25879256
Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome.
Hense A, Herman E, Oldemeyer S, Kottke T., J. Biol. Chem. 290(3), 2015
PMID: 25471375
Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways.
Engelhard C, Wang X, Robles D, Moldt J, Essen LO, Batschauer A, Bittl R, Ahmad M., Plant Cell 26(11), 2014
PMID: 25428980
Formation and Direct Repair of UV-induced Dimeric DNA Pyrimidine Lesions.
Kneuttinger AC, Kashiwazaki G, Prill S, Heil K, Muller M, Carell T., Photochem. Photobiol. 90(1), 2014
PMID: 24354557
A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
Dodson CA, Hore PJ, Wallace MI., Trends Biochem. Sci. 38(9), 2013
PMID: 23938034

22 References

Data provided by Europe PubMed Central.

The cryptochromes.
Lin C, Todo T., Genome Biol. 6(5), 2005
PMID: 15892880
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Loss of cryptochrome reduces cancer risk in p53 mutant mice.
Ozturk N, Lee JH, Gaddameedhi S, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 106(8), 2009
PMID: 19188586
The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling.
Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, Leaderer D, Holford T, Hansen J, Zhu Y., Cancer Prev Res (Phila) 3(4), 2010
PMID: 20233903
Structural biology of DNA photolyases and cryptochromes.
Muller M, Carell T., Curr. Opin. Struct. Biol. 19(3), 2009
PMID: 19487120
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M., J. Biol. Chem. 282(13), 2007
PMID: 17237227
The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A., J. Biol. Chem. 282(20), 2007
PMID: 17355959
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E., J. Biol. Chem. 282(17), 2007
PMID: 17298948

Hoang, PLoS Biol. 6(), 2008
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C., Proc. Natl. Acad. Sci. U.S.A. 108(51), 2011
PMID: 22139370
Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae.
Worthington EN, Kavakli IH, Berrocal-Tito G, Bondo BE, Sancar A., J. Biol. Chem. 278(40), 2003
PMID: 12878596
Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
Kottke T, Batschauer A, Ahmad M, Heberle J., Biochemistry 45(8), 2006
PMID: 16489739
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
Selby CP, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17062752
Reaction mechanism of Drosophila cryptochrome.
Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 108(2), 2011
PMID: 21187431
The C termini of Arabidopsis cryptochromes mediate a constitutive light response.
Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR., Cell 103(5), 2000
PMID: 11114337
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C., Science 322(5907), 2008
PMID: 18988809
Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY.
Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, Costa R, Kyriacou CP., Curr. Biol. 11(12), 2001
PMID: 11448767
Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
Kondoh M, Shiraishi C, Muller P, Ahmad M, Hitomi K, Getzoff ED, Terazima M., J. Mol. Biol. 413(1), 2011
PMID: 21875594

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 22890584
PubMed | Europe PMC

Search this title in

Google Scholar