Elements of transcriptional machinery are compatible among plants and mammals

Wolf A, Akrap N, Marg B, Galliardt H, Heiligentag M, Humpert F, Sauer M, Kaltschmidt B, Kaltschmidt C, Seidel T (2013)
PLoS ONE 8(1): e53737.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
In the present work, the objective has been to analyse the compatibility of plant and human transcriptional machinery. The experiments revealed that nuclear import and export are conserved among plants and mammals. Further it has been shown that transactivation of a human promoter occurs by human transcription factor NF-κB in plant cells, demonstrating that the transcriptional machinery is highly conserved in both kingdoms. Functionality was also seen for regulatory elements of NF-κB such as its inhibitor IκB isoform α that negatively regulated the transactivation activity of the p50/RelA heterodimer by interaction with NF-κB in plant cells. Nuclear export of RelA could be demonstrated by FRAP-measurements so that RelA shows nucleo-cytoplasmic shuttling as reported for RelA in mammalian cells. The data reveals the high level of compatibility of human transcriptional elements with the plant transcriptional machinery. Thus, Arabidopsis thaliana mesophyll protoplasts might provide a new heterologous expression system for the investigation of the human NF-κB signaling pathways. The system successfully enabled the controlled manipulation of NF-κB activity. We suggest the plant protoplast system as a tool for reconstitution and analyses of mammalian pathways and for direct observation of responses to e.g. pharmaceuticals. The major advantage of the system is the absence of interference with endogenous factors that affect and crosstalk with the pathway.
Erscheinungsjahr
Zeitschriftentitel
PLoS ONE
Band
8
Zeitschriftennummer
1
Seite
e53737
ISSN
eISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Wolf A, Akrap N, Marg B, et al. Elements of transcriptional machinery are compatible among plants and mammals. PLoS ONE. 2013;8(1):e53737.
Wolf, A., Akrap, N., Marg, B., Galliardt, H., Heiligentag, M., Humpert, F., Sauer, M., et al. (2013). Elements of transcriptional machinery are compatible among plants and mammals. PLoS ONE, 8(1), e53737. doi:10.1371/journal.pone.0053737
Wolf, A., Akrap, N., Marg, B., Galliardt, H., Heiligentag, M., Humpert, F., Sauer, M., Kaltschmidt, B., Kaltschmidt, C., and Seidel, T. (2013). Elements of transcriptional machinery are compatible among plants and mammals. PLoS ONE 8, e53737.
Wolf, A., et al., 2013. Elements of transcriptional machinery are compatible among plants and mammals. PLoS ONE, 8(1), p e53737.
A. Wolf, et al., “Elements of transcriptional machinery are compatible among plants and mammals”, PLoS ONE, vol. 8, 2013, pp. e53737.
Wolf, A., Akrap, N., Marg, B., Galliardt, H., Heiligentag, M., Humpert, F., Sauer, M., Kaltschmidt, B., Kaltschmidt, C., Seidel, T.: Elements of transcriptional machinery are compatible among plants and mammals. PLoS ONE. 8, e53737 (2013).
Wolf, Annette, Akrap, Nina, Marg, Berenice, Galliardt, Helena, Heiligentag, Martyna, Humpert, Fabian, Sauer, Markus, Kaltschmidt, Barbara, Kaltschmidt, Christian, and Seidel, Thorsten. “Elements of transcriptional machinery are compatible among plants and mammals”. PLoS ONE 8.1 (2013): e53737.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-11-07T10:16:44Z

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Techniques for the Analysis of Protein-Protein Interactions in Vivo.
Xing S, Wallmeroth N, Berendzen KW, Grefen C., Plant Physiol 171(2), 2016
PMID: 27208310
A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes.
Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS, Park N, Bae Y, Woo J, Kim D, Park M, Lee CJ, Park JY., Nat Commun 5(), 2014
PMID: 24496152
1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity.
Greiner JF, Müller J, Zeuner MT, Hauser S, Seidel T, Klenke C, Grunwald LM, Schomann T, Widera D, Sudhoff H, Kaltschmidt B, Kaltschmidt C., Biochim Biophys Acta 1833(12), 2013
PMID: 23872422
Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells.
Müller SM, Galliardt H, Schneider J, Barisas BG, Seidel T., Front Plant Sci 4(), 2013
PMID: 24194740

31 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
NF-kappaB in the nervous system.
Kaltschmidt B, Kaltschmidt C., Cold Spring Harb Perspect Biol 1(3), 2009
PMID: 20066105
NF-κB, inflammation, and metabolic disease.
Baker RG, Hayden MS, Ghosh S., Cell Metab. 13(1), 2011
PMID: 21195345

AUTHOR UNKNOWN, 0
New regulators of NF-kappaB in inflammation.
Ghosh S, Hayden MS., Nat. Rev. Immunol. 8(11), 2008
PMID: 18927578
Integrating cell-signalling pathways with NF-kappaB and IKK function.
Perkins ND., Nat. Rev. Mol. Cell Biol. 8(1), 2007
PMID: 17183360
IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response
AUTHOR UNKNOWN, 2010
I kappa B proteins: structure, function and regulation.
Whiteside ST, Israel A., Semin. Cancer Biol. 8(2), 1997
PMID: 9299585
Control of NF-kappaB activity by the I kappa B beta inhibitor
AUTHOR UNKNOWN, 1997
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
Seidel T, Golldack D, Dietz KJ., FEBS Lett. 579(20), 2005
PMID: 16061227
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schuttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination.
Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH., Plant J. 32(3), 2002
PMID: 12410810
GFP-p65 knock-in mice as a tool to study NF-kappaB dynamics in vivo.
De Lorenzi R, Gareus R, Fengler S, Pasparakis M., Genesis 47(5), 2009
PMID: 19263497
Transport between the cell nucleus and the cytoplasm.
Gorlich D, Kutay U., Annu. Rev. Cell Dev. Biol. 15(), 1999
PMID: 10611974
Characterisation of the passive permeability barrier of nuclear pore complexes.
Mohr D, Frey S, Fischer T, Guttler T, Gorlich D., EMBO J. 28(17), 2009
PMID: 19680228
The nuclear pore and plant development.
Meier I, Brkljacic J., Curr. Opin. Plant Biol. 12(1), 2008
PMID: 18938103
Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus.
Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA., J. Biol. Chem. 277(13), 2002
PMID: 11801607
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol. Biol. 53(1-2), 2003
PMID: 14756317
Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.
Goedhart J, Vermeer JE, Adjobo-Hermans MJ, van Weeren L, Gadella TW Jr., PLoS ONE 2(10), 2007
PMID: 17925859
Transcriptional regulation via the NF-kappaB signaling module.
Hoffmann A, Natoli G, Ghosh G., Oncogene 25(51), 2006
PMID: 17072323

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23326494
PubMed | Europe PMC

Suchen in

Google Scholar