Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials

Welsch R, Manthe U (2012)
The Journal Of Chemical Physics 137(24).

Journal Article | Published | English

No fulltext has been uploaded

Abstract
The multi-layer extension of the multi-configurational time-dependent Hartree (MCTDH) approach is applied to the investigation of elementary bimolecular chemical reactions. Cumulative reaction probabilities and thermal rate constants of the H + CH4 -> H-2 + CH3 reaction are calculated using flux correlation functions and the quantum transition state concept. Different coordinate systems and potential energy surfaces (PESs) are studied. The convergence properties of different layerings are investigated and the efficiency of multi-layer MCTDH approach is compared to the standard MCTDH approach. It is found that the multi-layer approach can decrease the numerical effort by more than an order of magnitude. The increased efficiency resulting from the multi-layer MCTDH approach is crucial for quantum dynamical calculations on recent global H + CH4 -> H-2 + CH3 PESs, e. g., the ZBB3-PES [Z. Xie, J. M. Bowman, and X. Zhang, J. Chem. Phys. 125, 133120 (2006)] based on permutational invariant polynomials, which are numerically more demanding than earlier PESs. The results indicate that an accurate description of all transition state frequencies is important to obtain accurate thermal rate constants. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772585]
Publishing Year
ISSN
PUB-ID

Cite this

Welsch R, Manthe U. Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials. The Journal Of Chemical Physics. 2012;137(24).
Welsch, R., & Manthe, U. (2012). Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials. The Journal Of Chemical Physics, 137(24).
Welsch, R., and Manthe, U. (2012). Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials. The Journal Of Chemical Physics 137.
Welsch, R., & Manthe, U., 2012. Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials. The Journal Of Chemical Physics, 137(24).
R. Welsch and U. Manthe, “Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials”, The Journal Of Chemical Physics, vol. 137, 2012.
Welsch, R., Manthe, U.: Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials. The Journal Of Chemical Physics. 137, (2012).
Welsch, Ralph, and Manthe, Uwe. “Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 -> H-2 + CH3 rate constants for different potentials”. The Journal Of Chemical Physics 137.24 (2012).
This data publication is cited in the following publications:
This publication cites the following data publications:

13 Citations in Europe PMC

Data provided by Europe PubMed Central.

Accuracy of the centrifugal sudden approximation in the H + CHD₃ → H₂ + CD₃ reaction.
Zhang Z, Chen J, Liu S, Zhang DH., J Chem Phys 140(22), 2014
PMID: 24929385

109 References

Data provided by Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
State-to-state reaction probabilities within the quantum transition state framework.
Welsch R, Huarte-Larranaga F, Manthe U., J Chem Phys 136(6), 2012
PMID: 22360179

AUTHOR UNKNOWN, 0

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23277927
PubMed | Europe PMC

Search this title in

Google Scholar